
CS 115 Spring 2015

Assignment: 7
Due: Monday, July 13 at 4:00 pm

Language level: Beginning Student with List Abbreviations
Coverage: Modules 1–8

For this and all subsequent assignments, to receive full marks you are required to use the design
recipe for every function you write. You may include the examples given in the assignment in
your submissions, but they will be ignored by the markers—you must develop a complete suite of
examples and tests on your own. For your convenience, an interface file which contains the headers
of the required functions is available on the course webpage.

Do not send any code files to course staff; they will not be accepted. Submissions must be made
via MarkUs as described on the course webpage. After submission, check your basic test results to
ensure your files were properly submitted. Solutions that do not pass the basic tests are unlikely to
receive any correctness marks.

Remember, the solutions you submit must be entirely your own work.

1. Write a Racket function binexp→string which consumes a BinExp as described in class and
produces a string representation of the binary expression. Parenthesis should be included
around every operation and all operations should be written using infix notation, e.g.,

• The string representation of (make-binode ’∗ 2 6) is "(2∗6)".

• The string representation of (make-binode ’+ 2 (make-binode ’− 5 3)) is "(2+(5-3))".

When just a number is consumed, binexp→string should produce the same output as
number→string. For example, (binexp→string 1) should produce "1". The function
symbol→string can be used to convert the operation symbols to their string equivalents.

2. Write a Racket function max-depth which consumes a BinExp as described in class and
produces the maximum “depth” of any number in the binary expression, where the depth of a
number is the number of parenthesis which surround it in the string representation.

For example, in "(2+(5-3))" the number "2" has a depth of 1 and the numbers "5" and "3"
have a depth of 2. Therefore, (max-depth (make-binode ’+ 2 (make-binode ’− 5 3))) should
produce 2.

Hint: Your code should work directly on binary expressions, i.e., don’t convert the binary
expression to a string.

CS 115 — Spring 2015 Assignment 7 1



3. (a) Write a Racket function bst? which consumes a binary tree (a BT as described in class)
and produces true if the tree is a binary search tree (a BST as described in class) and
false otherwise.
For example,
(bst? (make-node 5 "Tony"

(make-node 1 "Qiang" empty empty)
(make-node 6 "Judy"

empty
(make-node 14 "Wole" empty empty))))

should produce true, and
(bst? (make-node 5 "Tony"

(make-node 1 "Qiang" empty empty)
(make-node 6 "Judy"

(make-node 4 "Wole" empty empty)
empty)))

should produce false.
Hint: Consider using helper functions which determine the maximum and minimum
keys in a BT or BST .

(b) Write a Racket function add-bst which consumes an association (a (list Num Str) as
described in class) and a BST and produces a BST which is the same as the consumed
BST except that it includes one additional node which has a key value pair corresponding
to the given association. You may assume that the key in the association being added
does not appear in the given BST .
For example,
(add-bst (list 14 "Wole")

(make-node 5 "Tony"
(make-node 1 "Qiang" empty empty)
(make-node 6 "Judy" empty empty)))

should produce
(make-node 5 "Tony"

(make-node 1 "Qiang" empty empty)
(make-node 6 "Judy"

empty
(make-node 14 "Wole" empty empty))) .

CS 115 — Spring 2015 Assignment 7 2


