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Abstract—Clustering coefficient (C) is an important struc-
tural property to understand the complex structure of a graph.
Calculating C is a computationally intensive task. Thereby,
sampling-based methods have attracted substantial research
for estimating C, and the closely related metric, the number of
triangles. Unfortunately, widely used estimators for C is biased.
We quantify the bias using Talor expansion and find that the
bias can be determined by the number of shared wedges and
triangles in the sample. Based on the understanding of the bias,
we give a new estimator that corrects the bias. The results are
derived analytically and verified extensively in 56 networks
ranging in different size and structure. The experiments reveal
that the bias ranges widely from data to data. The relative
bias can be as high as 4% or can be negative. For most of the
graphs, the bias is small, although every graph does have a bias
as quantified by our analytical results. Negative or small biases
occur in online social networks where clustering coefficient
is typically high. Positive and large biases typically occur in
Web graphs, where there are nodes with high degrees but few
neighboring nodes connecting with each other.

Keywords-Graph sampling; Clustering Coefficient; Estimat-
ing algorithms; Bias; Variance.

I. INTRODUCTION

Analyzing very large graphs has been receiving increasing
attention from both academia [1] and industry [2]. Clustering
coefficient (hereafter C), also called transitivity, is one of the
key graph properties to characterize the complex structure of
networks [3]. Loosely speaking, it measures the probability
whether a friend’s friend is also a friend in social networks.
Since its incept in [3], it finds wide applications in a variety
of areas, such as computer networks (spam detection [4]),
social networks (community detection and blog analysis [5]),
biology (DNA sequence analysis [6]), economy (risk study
[7]), and many more.

There has been tremendous work on estimating graph
properties, in general, using sampling techniques [1], [8].
Sampling is necessary when the graph is very large, or the
graph in its entirety is not available, such as in the case
of online social networks. The estimation of C property has
been specifically addressed in [9]–[14]. Much more work has
been directed to a closely related triangle counting problem
[15]–[20].

Let Λ denote the number of wedges (or paths of length
two), ∆ the number of closed-wedges. Metric C is defined

as a ratio between the two, i.e.,

C =
∆

Λ
. (1)

Note that here we restrict our discussion to the global C
as defined above for the sake of simplicity. There are other
notions of Cs, such as local and average C, that are beyond
the scope of this paper. However, our method can be easily
extended to those Cs.

Suppose that ∆̂ and Λ̂ are unbiased estimators for ∆ and
Λ, respectively. In other words, E(∆̂) = ∆, and E(Λ̂) = Λ.
It has been taken for granted, e.g., in [10], [12], [14] and
[11], that the C estimator Ĉ is:

Ĉ =
∆̂

Λ̂
. (2)

Unfortunately, this is a biased estimator as we can see from
the fact that E(X/Y ) 6= E(X)/E(Y ). More precisely, by
applying expectation on the estimator, we have:

E(Ĉ) = E

(
∆̂

Λ̂

)
6= E(∆̂)

E(Λ̂)
=

∆

Λ
= C.

While it is easy to understand the existence of bias,
quantifying and correcting the bias is a challenging task.
Recently, Jha et al. [14] and Ahmad et al. [12] noticed the
bias problem and left it as an open problem to solve. In
2015, Jha et al. discussed the bias problem again, but could
not quantify it [21].

The analysis of the bias needs to be embedded in a con-
crete sampling method. We base our following discussions
on random edge sampling. Random edge sampling has been
widely used for estimating C [12], [14], [21], triangles [15]–
[20], and other graph properties [8], [22], [23]. It is also
closely related to other sampling methods. For example,
random walk [10], [11], [13] is an approximation of random
edge sampling in that their node sampling probabilities
are asymptotically equal in undirected graphs. Random
node sampling can also be associated with random edge
sampling–when we sample node with probability propor-
tional to its size (PPS), it is actually a kind of random edge
sampling in the sense that sampling probability of the node
is the same in two sampling schemes.



For this random edge sampling scheme, we quantify the
bias using the ‘power method’ [24]. It involves a Taylor
expansion that results in a long formula. The intuitive
understanding is lost in the complex formula without sim-
plification. Hence, we simplify the formula, and derive an
adjusted estimator as follows:

Ĉ∗ =
∆̂

Λ̂

[
1 +

r

p

]−1

, (3)

where p is the sampling probability, r is a constant deter-
mined by the graph topology that will be explained later in
Section II. Roughly speaking, r is dominated by the ratio of
the third moment and the square of the second moment of
the degrees of the graph. The corrected estimator in Eq. 3
highlights the importance of the problem particularly in the
age of big data: when the graph is very large, only a small
fraction of the graph is needed to achieve high accuracy,
resulting in a very small p. Although r, in general, is a very
small number, r/p may not be neglectable in this case. We
will show that r/p can be as high as 0.04 in certain cases.

Eq. 3 is good for understanding the nature of the bias
problem. However, it cannot be used for estimation in
practice because r is unknown from the sample. In other
words, we also need to estimate r to correct the bias. Thus,
we derive a corrected estimator for random edge sampling
as below:

Ĉ+ =
∆g

Λg

[
1 + rg

]−1

, (4)

where rg = 2Ψg/Λ
2
g−Ωg/∆gΛg . Variable Ψg is the number

of shared wedges, Ωg is the number of shared wedges and
closed-wedges, all in sample graph g. We show that the
result can be simplified further by taking the first term only
in the above formula, assuming that the graph is large. Based
on this, the bias can be quantified by the second and third
moments of the degrees of the nodes in the graph. Since the
simplified result is derived using several approximations, we
need to empirically evaluate the approximation using real
graphs. The result is confirmed and explained on 56 real-
world graphs.

II. THE BIAS PROBLEM

A. Clustering Coefficient

Let G(V, E) be a simple graph, where V and E are the
set of nodes and the set of edges, respectively. Let N = |V|,
M = |E|, and each node is labeled as 1, 2, . . . , N . Let di
denote the degree of node i, for i ∈ {1, 2, . . . , N}. A wedge
W is a triplet (u, v, w), where u, v, w ∈ V are three distinct
nodes, (u, v) ∈ E , and (v, w) ∈ E . Wedge W is closed if
(u,w) ∈ E . Otherwise it is open. A triangle consists of three
(closed) wedges. Let Λi = di(di − 1)/2 denote the number
of wedges for node i, and ∆i the number of closed-wedges

Table I: Summary of the notations

Notation Meaning
G(V, E) Input graph (undirected and no self-edges)
g A subgraph of G
N,M Number of nodes and edges in G
n Sample size
di Degree of node i in G
Λ # wedges in G
∆ # closed-wedges in G
Λg # wedges in g
∆g # closed-wedges in g. Closeness checked on G
Λi # wedges of node i
∆i # closed-wedges of node i
Ψ # pairs of shared wedges in G
Ω # pairs of a wedge and a closed-wedge

sharing one edge in G
Ψg Ψ counted in g
Ωg Ω counted in g

〈d〉 Average degree of G. 〈d〉 = 1
N

∑N
i=1 di

〈d2〉 Second moment. 〈d2〉 = 1
N

∑N
i=1 d2

i

〈d3〉 Third moment. 〈d3〉 = 1
N

∑N
i=1 d3

i

for node i. Clustering coefficient is defined as the proportion
of the wedges that are closed [9], [25], i.e.,

C =

∑N
i=1 ∆i∑N
i=1 Λi

=
∆

Λ
. (5)

Table I summarizes a list of notions used in this paper.

B. The Sampling Scheme

Our sampling scheme is based on edge sampling. It selects
n distinct edges from the original graph G uniformly at
random to generate a subgraph g. When interpreted as a node
sampling process, it is the same as PPS sampling, where
nodes are sampled with Probability Proportional to Size. In
this sense, random walk sampling is an approximation to
random edge sampling.

Let Λg be the count of wedges in g, and ∆g denotes the
number of closed-wedges restricted to the wedges of g in
which their closenesses are checked based on the original
graph G. The expectations of Λg and ∆g are

E(Λg) = Λp2, E(∆g) = ∆p2. (6)

Hence, the unbiased estimator for Λ and ∆ [20] are

Λ̂ =
Λg

p2
, ∆̂ =

∆g

p2
.

Under this sampling scheme, the biased estimator in Eq.
2 is instantiated as

Ĉ =
∆g

Λg
. (7)

C. The Bias

We quantify the bias using the classic power method [24].
By Taylor expansion, the quadratic approximation of x/y in
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Figure 1: Illustration of shared wedges and closed-wedges.
(a) A sample graph; (b) Wedge (l, j, i) shares with wedge
(k, j, i); (c-d) Wedge (l, j, i) shares with closed-wedges
(i, j, k), (k, i, j); (e) Wedge (l, j, k) shares with closed-
wedge (j, k, i). The large node in the plot indicates the
centre node of the closed-wedge. E.g., in Panel (c) the
closed-wedge is (k, j, i).

the neighbourhood of (a, b) is

x

y
≈ a

b
+

(
1

b
(x− a)− a

b2
(y − b)

)
+

(
a

b3
(y − b)2 − 1

b2
(x− a)(y − b)

)
.

Applying expectation on both sides of the equation yields:

E
(
x

y

)
≈ E

(a
b

)
+

1

b
(E(x)− a)− a

b2
(E(y)− b)

+
a

b3
E(y − b)2 − 1

b2
E(x− a)(y − b).

(8)

Take a = E(∆g), b = E(Λg), x = ∆g , and y = Λg . Note
that by definition cov(∆g,Λg) = E((∆g − E(∆g))(Λg −
E(Λg))), and var(Λg) = E(Λg − E(Λg))2. Eq. 8 can be
rewritten as:

E
(

∆g

Λg

)
≈ E(∆g)

E(Λg)
+

E(∆g)var(Λg)

E(Λg)3
− cov(∆g,Λg)

E(Λg)2
.

(9)

Applying the fact that C = ∆/Λ = E(∆g)/E(Λg), the
above equation can be reformulated as

E(Ĉ) ≈ C
(

1 +
var(Λg)

E(Λg)2
− cov(∆g,Λg)

E(∆g)E(Λg)

)
. (10)

We can see that the bias hinges on the variance of Λg

and covariance between ∆g and Λg . Before going into
the derivation of the variance and covariance, we need
to understand the dependency between two wedges, and
the dependency between a wedge and a closed-wedge as
illustrated in Fig. 1. Panel (a) is an example graph. In the
graph, two wedges (k,j,i) and (l,j,i) share a common edge
(j,i). We use Ψ to denote the number of such sharing in
a graph. Panel (c) is an example of sharing between a
wedge and a closed-wedge: wedge (l,j,i) and closed-wedge
(k,j,i) share a common edge (j,i). Panels (d) and (e) are
similar to (c), except that the center node in the wedges
is changed. Here we showcase the following distinction
between a closed-wedge and a triangle: a closed-wedge

is similar to a triangle except that each triangle has three
closed-wedges, and correspondingly, a closed-wedge has a
center node. We denote the number of such sharing using
Ω. In a graph, Ψ and Ω can be very large, much larger than
Λ and ∆.

Let λi be an indicator for the ith wedge in the original
graph G. Indicator λi is 1 if the wedge is sampled in g;
otherwise it is 0. Let 1, 2, ..,Λ be the labels for all wedges
in G. Λg =

∑Λ
i=1 λi. By applying var on both sides on the

equation, we have

var(Λg) = var(

Λ∑
i=1

λi) =

Λ∑
i=1

Λ∑
j=1

cov(λi, λj)

=

Λ∑
i=1

var(λi) +
∑
i 6=j

cov(λi, λj). (11)

Variable λi follows a Bernoulli distribution with probabil-
ity p2 and var(λi) = p2−p4. For the covariance, we need to
consider the cases of dependent wedges. Wedges λi and λj
are dependent when they have a shared edge in graph G as il-
lustrated in Panel (b) of Fig. 1. In such a case, E(λiλj) = p3,
hence cov(λi, λj) = E(λiλj) − E(λi)E(λj) = p3 − p4.
There are 2Ψ cases (each cov(λi, λj) has an equivalent
cov(λj , λi)) , we have the following by substituting var(Λi)
and cov(λi, λj) in Eq. 11.

var(Λg) = Λ(p2 − p4) + 2Ψ(p3 − p4). (12)

Next we derive cov(∆g,Λg). Let δi be the indicator for
the ith closed-wedge in graph G. The covariance between
∆g and Λg is

cov(∆g,Λg) =

∆∑
i=1

Λ∑
j=1

cov(δi, λj)

=

∆∑
i=1

Λ∑
j=1

E(δiλj)− E(δi)E(λj).

When δi and λj are independent, they share no edges, the
covariance between them is cov(δi, λj) = 0. There are two
cases that δi and λj are dependent: the wedge has either one
edge or two edges shared with the closed-wedge. In the first
case, E(δiλj) − E(δi)E(λj) = p3 − p4. Note that it is not
p4 − p5 because our sampling method checks the closeness
of a wedge whenever a wedge is encountered. Hence the
probability of seeing a closed-wedge in a sample is p2

instead of p3. In the second case, the wedge is contained
in the closed-wedge, and E(δiλj)− E(δi)E(λj) = p2 − p4.
Since there are Ω number of one-edge sharing, and ∆
number of two-edge sharing, the covariance is

cov(∆g,Λg) = ∆(p2 − p4) + Ω(p3 − p4). (13)

Substitute Eq. 12 and Eq. 13 into 10, and assume that
1−p ≈ 1−p2 ≈ 1 because the sampling probability is very
small for large graphs, we obtain



E(Ĉ) ≈C
(

1 +
2E(Ψg)

E(Λg)2
− E(Ωg)

E(Λg)E(∆g)

)
. (14)

Let relative bias RB = E(Ĉ)/C−1. After rearranging the
formula above, and remember that E(Λg) = Λp2, E(∆g) =
∆p2, E(Ωg) = Ωp3, and E(Ψg) = Ψp3, we quantify the
bias with:

RB ≈ 1

p

(
2Ψ

Λ2
− Ω

Λ∆

)
, (15)

and it can be estimated by

R̂B =
2Ψg

Λ2
g

− Ωg

Λg∆g
. (16)

Correspondingly, we have the following bias-corrected
estimators:

Ĉ∗ =
∆g

Λg

[
1 +

1

p

(
2Ψ

Λ2
− Ω

Λ∆

)]−1

, (17)

where p is the sampling probability, Ψ and Ω are the counts
for shared wedges and shared wedges and closed-wedges,
respectively. The practical estimator based on subgraph only
is

Ĉ+ =
∆g

Λg

[
1 +

2Ψg

Λ2
g

− Ωg

Λg∆g

]−1

, (18)

where Ψg and Ωg are the corresponding counts for Ψ and
Ω in subgraph g.

D. Counting Ψ and Ω

The estimator Ĉ+ relies on Ψg and Ωg . Ψ and Ω can be
computed efficiently, especially for sample graphs that are
typically not very large. Ψ is counted by iterating through
all the edges using the following equation:

Ψ =
∑

e(j,k)∈E

[(
dj−1

2

)
+
(
dk−1

2

)
+ (dj − 1)(dk − 1)

]
,

(19)

where j and k are end nodes of edge e and dx is the degree
of node x for x = j, k. This can be verified by looking at
the three cases of shared wedges in Panel (a) of Fig. 2. For
two first cases, there are

(
dj−1

2

)
+
(
dk−1

2

)
shared wedges.

For last case, there are (dj − 1)(dk − 1) shared wedges.
Metric Ω is computed by summarizing the overlaps for

each node in all the triangles using the following equation:

Ω =
∑

(i,j,k)∈∆

4dj − 6, (20)

where i, j, k are nodes in graph G and (i, j, k) is a closed-
wedge with center node j. Note that dj ≥ 2, hence Ω is
always a positive value.

The equation can be explained using the example depicted
in Panel (b) of Fig. 2. For node j, there are dj − 2 number

Cases Overlap cases Ψ

For node j (
dj−1

2

)
= 1

For node k Empty
(
dk−1

2

)
= 0

Between j and k
(dj − 1)(dk − 1) = 2

(a) Example for counting Ψ by checking edge (j, k).
Need to repeat the process for every edge in the graph.
For edge (j, k), Ψ =

(
dj−1

2

)
+
(
dk−1

2

)
+(dj−1)(dk−1) =

3.

Closed-wedge Overlap cases Φ

(i, j, k) dj − 2 for (j, k)

dj − 2 for (j, i)

(j, i, k) dj − 1

(j, k, i) dj − 1

(b) An example of counting Ω by checking node j. Need
to repeat the process for every node in triangles in the
graph. Large nodes indicate the center node of a closed-
wedge. For node j, there are 2×(dj−2)+dj−1+dj−
1 = 4dj−6 = 6 cases of overlaps between a wedge and
a closed-wedge.

Figure 2: An example for computing Ψ and Ω in the sample
graph in Fig. 1 Panel (a).

of wedges that share edge (j,k) for the the closed-wedge
(i,j,k). Similarly, there are dj − 2 number of shared pairs
with common edge (j, i). Now, we need to look at other two
closed-wedges (j,i,k) and (j,k,i). For closed-wedge (j,i,k),
there are dj − 1 number of wedges emanating from node
j that share one edge with the closed wedge. Similarly, for
closed-wedge (j, k, l), there are also dj − 1 shares. Hence,
overall for each node j, there are 4dj − 6 shared pairs.

III. EXPERIMENTS

A. Datasets

The bias phenomenon varies greatly from graph to graph.
To find out the patterns behind, we need to experiment
extensively with many different kinds of graphs. In total,
we use 56 real graphs from a variety of areas such as online
social networks, web graphs, Co-authorship, and citation
networks. The graph size also varies from about 4 × 103

(very small) to 65 × 106 (very large). The directionality of



Table II: Properties of the networks in our experiments, sorted by graph size N .

Dataset N(×106) 〈d〉 C ∆(×106) Λ(×109) 〈d3〉 (×106) 〈d2〉(×103) 2Ψ
Λ2 - Ω

∆Λ
2Ψ
Λ2

Ω
∆Λ

Description
Ego-facebook [26] 0.004 43.69 0.519 4.8 0.009 1.09 4.6 1.2e-5 7.4e-5 6.2e-5 OSN

CA-GrQc [26] 0.005 5.52 0.629 0.1 0.0002 0.003 0.09 -7.0e-5 5.2e-4 5.9e-4 Collaboration
Wiki-vote [26] 0.007 28.32 0.125 1.8 0.014 1.2 4.1 -3.7e-6 5.9e-5 6.3e-5 OSN

AstroPh [27] 0.01 21.10 0.31 4.0 0.012 0.17 1.3 4.8e-6 3.2e-5 2.7e-5 Citation
CA-CondMat [26] 0.02 8.08 0.264 0.5 2 0.01 0.1 2.5e-5 8.3e-5 5.8e-5 Coauthorship

HepPh [27] 0.02 224.14 0.279 587 2 184 149 1.0e-7 1.8e-6 1.7e-6 Coauthorship
Enron-email [27] 0.03 10.02 0.085 2 0.025 0.8 1.4 1.6e-5 5.2e-5 3.5e-5 E-communication

Brightkite [26] 0.05 7.35 0.110 1.4 0.013 0.15 0.4 1.8e-5 5.8e-5 3.9e-5 OSN
Facebook [27] 0.06 25.64 0.147 10.5 0.07 0.43 2.2 1.0e-6 8.3e-6 7.2e-6 OSN
Epinions [27] 0.07 10.69 0.065 4.8 0.07 1.3 1.9 3.5e-6 2.3e-5 1.9e-5 OSN

Slashdot-Zoo [27] 0.07 11.82 0.023 1.6 0.06 1.1 1.7 5.2e-6 2.2e-5 1.7e-5 OSN
Prosper [27] 0.08 74.60 0.003 3.4 1.1 30 24 -1.9e-7 2.6e-6 2.8e-6 Interaction

Livemocha [27] 0.1 42.13 0.014 10.0 0.716 12 13 -2.5e-7 3.2e-6 3.5e-6 OSN
Douban [27] 0.1 4.22 0.01 0.1 0.011 0.01 0.1 -4.7e-6 1.6e-5 2.1e-5 OSN
Gowalla [26] 0.1 9.66 0.023 6.8 0.290 24 2.9 4.9e-5 5.6e-5 7.1e-6 OSN

Libimseti [27] 0.2 155.97 0.007 207 28 2,203 255 1.3e-7 6.5e-7 5.1e-7 OSN
Digg [27] 0.2 11.07 0.061 42 0.69 15 4.9 5.1e-6 9.7e-6 4.6e-6 OSN

Web-Stanford [27] 0.2 14.13 0.008 33 3.94 536 27 7.1e-6 9.7e-6 2.5e-6 Web graph
Dblp-Coau [26] 0.3 6.62 0.306 6 0.021 0.008 0.1 -4.5e-7 8.3e-6 8.7e-6 Coauthorship

Web-NotreDame [26] 0.3 6.69 0.087 26 0.304 8.3 1.8 2.5e-5 2.9e-5 4.5e-6 Web graph
Amazon [26] 0.3 5.53 0.205 2 0.009 0.002 0.06 5.5e-6 1.0e-5 5.2e-6 Co-purchasing

Actor [27] 0.3 78.68 0.166 1,040 6.26 36 32 5.1e-8 5.3e-7 4.8e-7 Collaboration
Citeseer [27] 0.3 9.03 0.049 4 0.081 0.14 0.4 5.1e-6 8.8e-6 3.6e-6 Citation
Dogster [27] 0.4 40.03 0.014 250 17 1,742 82 1.5e-6 2.4e-6 8.7e-7 OSN
Catster [27] 0.6 50.32 0.028 1,969 69 11,637 222 1.2e-6 1.5e-6 2.2e-7 OSN

Web-Berkeley [27] 0.6 19.40 0.0069 194 27.9 3,348 81 2.2e-6 2.9e-6 6.5e-7 Web graph
Web-Google [27] 0.8 9.87 0.055 40 0.727 4.5 1.6 6.3e-6 7.5e-6 1.1e-6 Web graph

Youtube [26] 1.1 5.27 0.006 9 1 30 2.6 1.2e-5 1.5e-5 3.9e-6 OSN
Dblp [27] 1.3 8.16 0.170 36 0.214 0.067 0.3 1.2e-6 2.4e-6 1.1e-6 Coauthorship

Hyves [27] 1.4 3.96 0.001 2 1.4 45 2 2.9e-5 3.0e-5 9.5e-7 OSN
Wiki-Polish [27] 1.5 55.17 0.01 3,402 308 81,387 404 1.2e-6 1.3e-6 6.5e-8 Web graph
Trec-wt10g [27] 1.6 8.33 0.014 63 4.3 63 5.4 4.3e-6 5.3e-6 1.0e-6 Web graph

Wiki-Portuguese [27] 1.6 48.19 0.022 3,798 170 17,635 213 9.1e-7 9.7e-7 5.5e-8 Web graph
Wiki-Japanese [27] 1.6 69.82 0.021 3,863 180 15,595 223 6.9e-7 7.7e-7 8.0e-8 Web graph

Pokec [27] 1.6 27.31 0.046 97 2.08 3.8 2.5 1.2e-6 1.5e-6 2.3e-7 OSN
As-skitter [26] 1.6 13.08 0.005 86 16 341 18 1.5e-6 2.2e-6 6.9e-7 Internet topology

Wiki-Italian [27] 1.8 72.90 0.024 9,419 388 47,127 416 5.3e-7 5.8e-7 4.6e-8 Web graph
Wiki-En [27] 1.8 39.05 0.003 379 122.9 10,112 131 9.6e-7 1.2e-6 2.9e-7 Web graph
Hudong [27] 1.9 14.54 0.003 64 18.7 358 18 1.7e-6 2.0e-6 3.3e-7 Web graph

Hollywood [28], [29] 1.9 24.51 0.152 614 4 1.5 4 -4.4e-9 3.01e-7 3.06e-7 OSN
Baidu [27] 2.1 15.89 0.002 75 30.8 1,600 28 3.0e-6 3.6e-6 5.9e-7 Web graph

Flicker [27] 2.3 19.83 0.107 2,512 23 84 20 7.5e-8 4.4e-7 3.6e-7 OSN
Flixster [27] 2.5 6.27 0.013 23 1.7 0.88 1.3 6.0e-8 8.3e-7 7.7e-7 OSN

Wiki-Russian [27] 2.8 44.20 0.015 5,697 370 39,457 259 7.7e-7 8.2e-7 5.1e-8 Web graph
Wiki-Franch [27] 3.0 55.21 0.015 6,843 455 35,771 301 4.7e-7 5.2e-7 4.9e-8 Web graph

Orkut [27] 3.0 76.28 0.041 1,882 45 194 29 2.2e-7 3.0e-7 8.1e-8 OSN
Wiki-German [27] 3.2 40.77 0.0088 2,899 328 40,234 203 1.1e-6 1.2e-6 5.3e-8 Web graph

USpatent [27] 3.7 8.75 0.067 22 0.33 0.011 0.1 7.2e-8 5.2e-7 4.5e-7 Citation
LiveJournal [26] 3.9 17.35 0.125 533 4 3.1 2.1 5.0e-7 7.7e-7 2.7e-7 OSN

Orkut2 [28], [29] 11 56.80 0.0002 669 2,543 36,715 441 2.3e-8 6.6e-8 4.3e-8 OSN
DBpedia [27] 18 13.89 0.0016 986 583 19,199 63 9.7e-7 1.0e-6 5.6e-8 Web graph

Web-Arabic [28], [29] 22 48.70 0.031 110,686 3,531 86,644 310 1.5e-7 1.5e-7 4.7e-9 Web graph
Gsh-2015 [28], [29] 29 9.18 0.007 1,169 164 1,000 11 9.9e-7 1.1e-6 1.1e-7 Web graph

Twitter [27] 41 57.74 0.0008 104,474 123,435 5,659,930 5,927 1.8e-8 2.0e-8 1.4e-9 OSN
MicrosoftAc.G. [30] 46 22.61 0.015 1,734 115 203 4.9 7.1e-7 7.2e-7 1.07e-8 Citation

Friendster [27] 65 55.06 0.017 12,521 720 23 22 1.5e-9 4.3e-9 2.8e-9 OSN

directed graphs is ignored and self-edges are removed. The
properties of the graphs are summarized in Table II. The
codes along with the intermediate data are available on the
website http://cs.uwindsor.ca/∼etemadir/cbias. We used two
servers each with 24 cores and 256 GB RAM to calculate
ground truth for weeks for large graphs.

B. The Bias

First, we demonstrate the existence of bias using Fig.
3. In the plot, the observed bias is obtained by repeating
the estimation for 5 × 104 times except for the very large
datasets. X-axes are sampling probability p. We can see
that the range of p varies from data to data. We do not

set a fixed range of p because, for different data sizes, the
required sampling probability is different to achieve the same
accuracy. Larger data normally requires smaller sampling
probability. Hence, we fix the RSE (Relative Standard Error)
to be within the range of 0.1 to 0.4. Then, p is derived from
RSE using the formula provided in [20].

We can use Eq. 15 to interpret our experiments. From the
equation, we can tell that the bias depends on the sampling
probability p. Thus, we can expect that the bias diminishes
with the increase of sample size, as verified by all the
datasets. When the graph is very large, p could be very small
to achieve accurate estimation. For instance, in WebArabic,
p is in the order of 10−5 to achieve 95% confidence interval
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Figure 3: The observed vs. estimated RB of Ĉ. The results were obtained over 5 × 104 independent runs for all graphs
except for the large graphs in the last row with 104. The estimated RBs are obtained using Eq. 16.

C ± 0.1C. Secondly, the bias depends on the structure of
the graph characterized by r = 2Ψ

Λ2 − Ω
Λ∆ . Empirically, r

is a small value that ranges from 10−5 to 10−9 among 56
graphs we explored.

To verify our estimated bias, we plot the estimated bias
given in Eq. 16 side by side with the observed bias. Overall,
the observed and estimated biases fit well. Observed bias
fluctuates for some data sets, because of the low bias (hence
high variation) of the estimations. For graphs with larger bias
(e.g., RB> 1%), our equation fits the observed RB smoothly.
This confirms that two approximations made during the
derivation are valid, i.e. 1) it is good enough to take the
quadratic expansion of the Taylor expansion; 2) It is valid
to assume that 1− p ≈ 1.

The most important result of this paper is the bias-
corrected estimator Ĉ+. Fig. 4 compares the RB of Ĉ+ and
Ĉ. We can see that Ĉ+ corrects the bias consistently for
all the datasets. For the same reason explained above, RBs
fluctuates because the bias is very small, hence we see the

large variation. For data sets where bias is large (above 1%),
such as Gowalla, Web-Stanford, Web-NotreDame, Web-
Google, and all the graphs from Wiki, RBs are more smooth.

Fig. 5 gives another perspective for understanding Eq. 15.
This time we put 56 data sets in one plot, and demonstrate
how good Eq. 15 is to quantify the bias. Panel (A) plots
observed RB against the estimated ones. The observed RB
is taken for anticipated RSE=0.2. We can see that observed
RBs fit Eq. 15 well. It is not a perfectly straight line because
the estimation varies for each run. There are a few data sets
that have their relative biases larger than 1%. In most cases,
the RB is very small value that is close to zero. In some
cases, the bias is negative.

C. Positive and Negative Bias

We can observe that there are both positive and negative
biases, although most of the datasets demonstrate positive
bias. We should note that by Jensen’s inequality, E(1/X) ≥
1/E(X), thus we may have the wrong impression that there
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Figure 4: The bias-corrected estimator Ĉ+ vs. biased estimator. The observed RBs were obtained over 5× 104 independent
runs for all graphs except for the large graphs in the last row with 104.

is positive bias only. However, Jensen’s inequality can not
be applied to our result because we are looking at the bias
of Y/X , not 1/X . Therefore, in our case, we can have both
positive and negative biases.

Next, let’s check when negative bias can occur. According
to Eq. 15, the negative bias occurs when 2Ψ

Λ2 < Ω
Λ∆ .

In other words, it happens when Ω is large compared
with other metrics. Empirically, it happens only for seven
graphs among 56. These graphs are CA-GrQc, Wiki-vote,
Prosper, Livemocha, Douban, DBLP-coau, Hollywood. All
these graphs are (online) social networks with relatively high
clustering coefficients.

Recall that terms 2Ψ
Λ2 and Ω

Λ∆ are resulted from the first
two terms of Taylor expansion. The relationship between
these two terms decides not only the positive and negative
bias, but also the size of the bias. When the two terms are
close, the overall bias would be small. Hence, we use Fig. 5
Panel (B) to show the role of the first term. The figure plots
observed bias against the first term. We can see that the

first term can describe the RB for most data sets. However,
there are some outliers. We plotted the labels for the first 12
graphs describe in Table II. Recall that we sort the graphs
by their (node) size. Overall, we can see that the smaller the
graph is, the farther away it deviates from the linear fit. In
other words, for large graphs, we can use the first term 2Ψ

Λ2

to approximate the bias.
The next question is, if we focus on large graphs only, can

we simplify 2Ψ
Λ2 further? Estimation is needed only for very

large graphs. Hence the assumption on large graphs is valid.
The values of Ψ and Λ lack intuitively interpretation. Even
though it is easy to estimate them from a sample graph, it
would be helpful to give a more intuitive understanding of
the values as described in the next subsection.

D. Characterizing Bias using Second and Third Moments

When the graph is large, interestingly Λ and Ψ can
be approximated by the second and third moments of the
degrees of the graph. Recall that



Λ =

N∑
i=1

Λi =

N∑
i=1

(
di
2

)
.

When the graph is large, d2
i dominates, and the above can

be simplified as

Λ ≈0.5N〈d2〉. (21)

Similarly,

Ψ =
∑

(i,j)∈E

[(
di−1

2

)
+
(
dj−1

2

)
+ (di − 1)(dj − 1)

]

=

N∑
i=1

di

(
di−1

2

)
+
∑

(i,j)∈E

(di − 1)(dj − 1) ≈ 0.5N〈d3〉.

Therefore, we can approximate the bias by ignoring the
second term:

RB ≈ 2〈d3〉
pN〈d2〉2

, (22)

where 〈d2〉 =
∑N

i=1 d
2
i /N , and 〈d3〉 =

∑N
i=1 d

3
i /N .

Although this result is not rigorous, we can demonstrate
that 2〈d3〉

pN〈d2〉2 can approximate Ψ
Λ2 well using Fig. 6. A visual

inspection reveals that, among all 56 graphs including those
small ones, all the data points are aligned well along the
line. The Pearson correlation coefficient between those two
is 0.99 for both logged and unlogged data points. We show
the loglog plot only here. The unlogged version will have
most data points cramped on the left lower corner due to
the uneven distribution of those values.

This result tells us that the bias can be mostly determined
by the third and second moments of degrees of the graph
when the graph is large. We want to emphasize that when
estimating clustering coefficient using Ĉ+, we only need to
know the Ψ and Ω in the sample graph. There is no need to
calculate the second and third moments for the entire graph.
Eq. 22 is used only to understand the nature of the bias–the
bias is large only when the third moment of the degree is
large.

E. When the Bias Is Large

Practitioners need to know what kind of graphs may have
a large bias. Our results point out that when the bias is
large, Ψ is relatively large while Ω is relatively small. This
happens for web graphs, such as a Stanford Web depicted
in Fig. 7. The figure shows only a sampled graph obtained
from a random walk. Yet it can reveal the overall structure of
the graph: It contains a ball (s) that has a very high degree.
Therefore, Ψ (or, equivalently, 〈d3〉) is large. At the same,
there are no triangles in the ball structure, Ω will not increase
for this node. This explains why the web graphs often have
higher bias, as indicated in Fig. 3.

IV. RELATED WORK

To estimate C, edge sampling is used in [12], [14], [21].
Property C is estimated by using unbiased estimators ∆̂ and
Λ̂, i.e., Ĉ = ∆̂/Λ̂. [12] used different probabilities to select
edges, i.e., neighbors of sampled edges are chosen with
higher probabilities, to increase the chance of identifying
a (closed) wedge in subgraph g. Edge sampling was also
used in [14], [21] to implement wedge sampling. Obviously,
such estimators are biased, also mentioned in [12], [14],
[21]. However, the authors did not provide an analytical and
even experimental results for the bias of such estimators.

Another technique in this context is random walk [10],
[11]. It samples nodes uniformly at random proportional to
their degrees. It estimates ∆ and Λ based on the properties of
sampled nodes. Then, C is estimated using ∆̂/Λ̂. Obviously,
such estimator for C is biased. Moreover, the performance
of these methods depends on the structure of the original
graph and varies very from data to data.

Wedge sampling is another technique [9]. It selects wedges
uniformly at random, and the fraction of closed ones is used
as an approximation for C. Unfortunately, sampling a ran-
dom wedge from large graphs is computationally expensive.
Therefore, [31] used MapReduce to implement this method
on large graphs. The extension of [9] with more experimental
results are discussed in [25], [32].

Another closely related direction is estimating the count
of triangles using random edge [15], [16], [18]–[20], [33],
random wedge [17], [25], and random walk [34] sampling.
Obviously, to estimate C, one also needs to approximate the
number of wedges in the original graphs.

V. DISCUSSIONS AND CONCLUSIONS

Bias is a perplexing problem in estimating graph proper-
ties in general [22] and clustering coefficient in particular
[14]. It is difficult to observe because, for many graphs, es-
pecially small ones, the bias is almost negligible. Therefore,
it has been taken for granted to use biased estimators by
practitioners as well as researchers [10], [11]. It only became
a more prominent problem recently, when people started to
estimate very large graphs.

Bias for clustering coefficient estimation is difficult to
quantify and correct [12], [21]. It involves two variables,
i.e., Λg and ∆g . We use Taylor expansion to approximate
the bias, and show that quadratic expansion is good enough
for the approximation. The quadratic expansion involves the
variance and covariance of wedges and closed-wedges in
the sample graph. We show that they can be quantified by
Ψ and Ω and estimated by Ψg and Ωg . Based on this result,
we propose a bias-corrected estimator Ĉ+.

Bias for clustering coefficient estimation is difficult to
understand. We observe positive and negative biases for
different graphs. It can be as large as 4% for some graphs.
On the other hand, it can be small even if the graph is
very large. To understand negative bias, we find that the
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Figure 5: RB depends on the first term and second term of the Taylor expansion. The outliers are the 10 smallest graphs.
Observed RBs are taken when RSE=0.2 over 105 independent runs.
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Figure 7: A sample of the Stanford Web network.

second term dominates the equation only when the network
is relatively small, and they are (online) social networks. In
other words, their clustering coefficient is high.

Our result is simple and elegant: first we quantify the
bias as RB ≈ 1

p

(
2Ψ
Λ2 − Ω

Λ∆

)
. This is much simpler than

the original Taylor expansion because of our assumption
that 1 − p ≈ 1. The assumption is valid when the graph
is large. In most of the data sets we experimented with, p is
typically in the order of 10−4 to achieve reasonable accuracy.
Furthermore, we demonstrate that RB can be simplified
further by ignoring the second term when the graph is large,
i.e., RB ≈ 2Ψ

pΛ2 . Based on this, we can simplify the result
further by approximate the bias using the second and third
moments of the degrees of the graph, i.e., RB ≈ 2〈d3〉

pN〈d2〉2 .
This is instrumental in helping us identify the type of graphs
that have high bias.
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