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ShortWalk: An Approach to Network Embedding on
Directed Graphs

Fen Zhao · Yi Zhang · Jianguo Lu

Abstract In network embedding algorithms, long random walks are often used to
convert the graph into ‘text’ so that node embeddings can be learned by Skip-gram
with Negative Sampling (SGNS) model. However, in a directed graph, long ran-
dom walks can be trapped or interrupted, leading to low-quality embeddings. This
paper proposes a new algorithm, called ShortWalk, to improve the directed graph
network embeddings. ShortWalk performs short random walks that restart more
frequently thus produces shorter traces. It also gives nodes equal weights by gen-
erating the training pairs using pair-wise combination of nodes on the traces. We
validate our method on eight directed graphs with different sizes and structures.
Experimental results confirm that ShortWalk outperforms DeepWalk consistently
on all datasets in node classification and link prediction tasks.

Keywords Network embedding, Skip-gram, Negative Sampling, DeepWalk,
Random Walk.

1 Introduction

Network embedding is crucial for network mining and analyses (Cai et al., 2018).
Neural Network based network embedding algorithms, e.g., DeepWalk(Perozzi
et al., 2014) and node2vec (Grover and Leskovec, 2016a), are based on the well-
known word-embedding algorithm (Mikolov et al., 2013a). Among many variants
of the cluster of the algorithms, the Skip-Gram with Negative Sampling model
(SGNS) has been shown to be the most effective. It was originally designed for
language modelling. Hence, a crucial step in a network embedding algorithm is
transforming the network to a ‘text’ by a graph traversing method. DeepWalk
uses long random walks. node2vec improved DeepWalk with biased random walks.
Long random walks in DeepWalk and node2vec are necessary to produce ‘text’ so
that subsequent SGNS can be applied. In undirected graphs, it is reported that
the best performance is achieved when random walk length reaches 100 in most
relevant papers, such as in (Grover and Leskovec, 2016a) and (Dong et al., 2017a).
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However, random walks are normally not that long. The well-known PageRank
algorithm uses random walks that restart at a probability ranging between 0.15 to
0.2 (Brin and Page, 1998; Zhao et al., 2019), resulting in an average walk length
of five to six. Note that there are two crucial differences between random walk in
PageRank and the random walk in DeepWalk: in PageRank, every path can be of
different length, not a fixed length as in DeepWalk and node2vec; and the average
path length is much shorter in PageRank.

There is a reason for choosing a shorter length in PageRank: a long random
walk may be trapped in a small region, and some nodes could be visited repeatedly
in the trapped area (Sen and Chaudhary, 2017). To avoid these traps, PageRank
introduces damping factor that allows the walker teleports to another node ran-
domly. There is also a reason for long random walks in DeepWalk and node2vec:
long random walks resemble paragraphs in text, hence SGNS can be run on the
‘text’. If paragraph lengths were only five on average, running SGNS would be
meaningless since the window size is usually set from 5 to 10 (Perozzi et al., 2014).

To solve the dilemmas in directed graph embedding algorithms, we propose a
new method called ShortWalk. It performs short random walks that have frequent
restarts, resulting in short random walk traces. Then, instead of applying SGNS
directly on the traces, ShortWalk obtains the training pairs with the pair-wise
combination of the nodes in the short random walk traces. We prove that such
pair-wise combination is actually equivalent to the sampling strategy in SGNS. We
validate our method on eight directed graphs. Experimental results suggest Short-
Walk outperforms DeepWalk consistently on all datasets in both classification and
link prediction tasks.

Many graph embedding algorithms are based on SGNS, and only differ in the
types of networks (e.g., signed networks, heterogeneous networks), and in the way
to perform random walks (e.g., in favour of transitive relations, or proportional to
Katz similarities). This paper focuses on the most simple network and the default
random walk, to gain insight into the impact of short walk. We believe that our
result can be extended to various types of networks and types of random walks.

2 Background and Related Work

Graph embedding or graph node embedding is to find a short and dense vector
representation for nodes in a graph. We refer to (Wang et al., 2020) for a good
review of recent developments in this area. Graph embedding is widely used in
social network analyses, because once the embedding is obtained, off-the-shelve
machine learning algorithms can be applied on graphs.

The basic idea of graph embedding is to find vector representation of the nodes
so that their node similarities are preserved. The most straightforward approach is
to use graph adjacency matrix to capture node similarities, and use matrix factor-
ization, such as SVD (Singular Value Decomposition) and MDS(Multidimensional
scaling), to reduce the dimensionality (Tenenbaum et al., 2000). Along this line,
both the adjacency matrix and the dimensionality reduction techniques can be
expanded. For the input matrix, instead of the zero/one adjacency matrix that
simply reflects the edge relations in a graph, numerous other relations have been
experimented with. For example, the input matrix can be Laplacian matrix (Belkin
and Niyogi, 2002), Katz matrix that reflects Katz similarities (Ou et al., 2016),
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multiple-hop connections (Cao et al., 2015). For the dimensionality reduction,
SVD has the scalability issue. More approaches have been treating dimensionality
reduction as an optimization problem that can be solved with SGD algorithms
(Goyal and Ferrara, 2018a) (Cai et al., 2018).

Graph embedding induced from SGNS With the breakthrough in neural-
network algorithms (Bengio et al., 2003), in particular the negative sampling tech-
niques inspired by noice contrastive estimation (Gutmann and Hyvärinen, 2010),
the state-of-the-art of graph embedding algorithms are derived from SGNS(Skip-
Gram Negative Sampling). SGNS was first proposed as a variant of word2vec algo-
rithms (Mikolov et al., 2013b). The representative graph embedding algorithm in
this direction is DeepWalk (Perozzi et al., 2014). It produces random walk traces
to feed into SGNS. Node2Vec argues that the default random walk may not be
able to capture the structure of the graph, and proposes a range of biased ran-
dom walks that are controlled by hyper-parameters to be adjusted according to
graph structure (Grover and Leskovec, 2016b). LINE produces the training pairs
for SGNS similar to Katz distances that are mainly of first-order and second or-
der proximity (Tang et al., 2015a). Although these algorithms claim to work on
directed graphs as well, but the results are not good as we will demonstrate in the
experiment section.

Directed graph embedding There has been substantial work on embeddings
designed specifically for directed graphs. Some are performed in the setting of
matrix factorization, such as HOPE (Ou et al., 2016), ATP (Sun et al., 2018),
and DGE (Chen et al., 2007). They focus on the comparison of various input
similarity matrices. For instance, HOPE compared extensively on many node sim-
ilarity metrics including Katz Index, Rooted Page Rank, Common Neighbors, and
Adamic-Adar score. Then matrix factorization is applied to obtain node embed-
dings. ATP (Sun et al., 2018) preserves the asymmetric relations by incorporating
the hierarchy matrix and adjacency matrix together. NMF(Non-negative matrix
factorization) is used to factorize the asymmetric matrix into embeddings.

Recently, directed graph embedding algorithms that are induced from SGNS
start to emerge, e.g., APP(Zhou et al., 2017) and NERD(Khosla et al., 2019).
They try to embed graph nodes to two spaces, one for target and one for source,
capturing the directionality of the edges. This could be useful in some applications
such as link prediction where relations are not symmetric. Our ShortWalk seeks
to represent nodes in one space so that it is more generic. APP uses the rooted
random walk to generate a path from a source to a target to preserve the asymmet-
ric proximity. The (source, target) pairs are fed into the SkipGram with Negative
Sampling(SGNS) model to learn network embeddings. Similarly, NERD proposes
an alternating random walk to generate training pairs by defining a source walk
and target walk. There are also embeddings for more complex networks, such as
signed and directed network (Kim et al., 2018), and heterogeneous information
networks (Dong et al., 2017b). (Abu-El-Haija et al., 2017) experimented on di-
rected graphs but mainly on edge embedding. VERSE (Tsitsulin et al., 2018) also
explores PageRank like random walks among other features.

Walk length Most existing works use random walk with fixed length to cap-
ture the structure of a network. The walker does not stop on current path unless
the length of the path reaches a threshold l. It is widely used by network embed-
ding algorithms such as DeepWalk (Perozzi et al., 2014), node2vec (Grover and
Leskovec, 2016a), walklets (Perozzi et al., 2016), and metapath2vec (Dong et al.,
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2017a), etc.. Existing works also suggest that longer path will give better results
in the undirected graphs (Grover and Leskovec, 2016a; Dong et al., 2017a). Thus,
the length of the path l is typically set to a large number such as 40 (Perozzi et al.,
2014), 80 (Grover and Leskovec, 2016a), or 100 (Dong et al., 2017a). Intuitively,
the random walk with fixed length is a variant of standard random walk with
α = 1− 1/l. Taking DeepWalk as an example. When l = 100, DeepWalk equals to
random walk with damping factor α = 1−1/100 = 0.99. However, in most PageR-
ank applications, such as search engine for World Wide Web, the damping factor
α is set to 0.85 (Brin and Page, 1998), which is much smaller than DeepWalk. The
difference may not be obvious in an undirected graph, where the PageRank values
are proportional to nodes’ degrees (Grolmusz, 2015). However, in directed graphs,
the larger α will cause problems on certain graph structures such as spider traps
(Sen and Chaudhary, 2017). The details will be discussed in the next section.

3 The Dilemma

3.1 The Problem of Long Random Walks

Long random walk is never an option in PageRank-like algorithms (Brin and Page,
1998; Zhao et al., 2019). The reason is obvious: enclosed loops may occur and nodes
could be visited repeatedly in long random walks, hence the visiting probability
can be enhanced tremendously. For instance, if two webpages link each other only,
each would be visited 50 times if the walk length is 100 that is the default parame-
ter in typical network embedding algorithms like DeepWalk (Perozzi et al., 2014).
The ‘importance’ of the nodes are amplified by roughly 50 times, compared with
the nodes that connect well with others. To overcome this problem, PageRank-like
algorithms introduce frequent random jumps, say, random jump with a probability
of 0.15, resulting in average random walk length of around six. Thus, the impor-
tance of the mutually linked webpages would be amplified by 6/2=3 on average,
instead of 50 in long random walks in this example.

Table 1 Top visited nodes in WebGoogle. Nodes (webpages) are sorted by their occurrence
count in DeepWalk100 traces.

Node
Degree DeepWalk100 DeepWalk5

In Out Count PageRank Count PageRank
(/total) (α = 0.99) (/total) (α = 0.8)

www.google.com/googleblog/ 203 1 0.103 0.101 0.002 0.004
www.google.com/advanced search 11,397 11 0.065 0.054 0.082 0.064
www.google.com/support/talk 5 1 0.056 0.076 0.001 0.002
www.google.com/holidaylogos.html 7,730 15 0.047 0.037 0.046 0.037
www.google.com/terms of service.html 3,384 10 0.020 0.028 0.015 0.020
www.google.com/intl/en/about.html 270 9 0.016 0.011 0.012 0.009
www.google.com/intl/en/ads/ 98 15 0.015 0.012 0.012 0.010
www.google.com/intl/en/services/ 49 17 0.015 0.011 0.011 0.009
www.google.com/webmasters/ 1,036 21 0.014 0.016 0.010 0.011
www.google.com/options/ 3,679 5 0.013 0.013 0.017 0.016
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Long random walks indeed cause such unfair weighting in real applications,
in various kinds of graphs. We illustrate this phenomenon with a real webpage
datasets crawled from http://google.com (Palla et al., 2007). Table 1 lists the oc-
currences for top 10 visited webpages. The superscript of DeepWalk represents the
maximum length of the traces. Webpages are sorted by their occurrence in Deep-
Walk with walking path l = 100. DeepWalk uses random walk with fixed length to
generate the traces. It can be treated as a variant of PageRank with α = 1− 1/l.
Therefore, we also list the corresponding PageRank value in the table. From the
table, we can see that Google Blog occupies 10.3% occurrence in the walk traces.
Therefore, it will have massive training pairs in SGNS. However, this webpage has
a very small in-degree and out-degree – 203 and 1. We notice that this node has
a very high PageRank value calculated by α = 0.99, which is very close to its oc-
currence. Moreover, the Pearson’s Correlation Coefficient between a node appears
in the walking traces generated by DeepWalk100 and its corresponding PageRank
value by α = 0.99 is 0.97. The high PageRank value is caused by the self-loop
– this page has only one out-link pointing to itself. When setting α = 0.8, the
PageRank value of Google Blog becomes 25 times smaller than α = 0.99. Thus, it
is expected to see the occurrence obtained by DeepWalk5 decreases to 0.2%, which
is 51.5 times less than long traces.

We then further explore the impact of path length l on PageRank value distri-
bution using Figure 1. As shown in Panel (A), when l is large, the slope is steeper,
gap between top occurred nodes and lower frequent nodes are big. It means that
lower frequent node will have less training pairs than frequent ones. In this case,
some nodes may not have enough training pairs, resulting in low-quality embed-
dings. On the other hand, the gap is much smaller when l = 5.
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Fig. 1 Distributions of occurrence counts (Panel A) PageRank values (Panel B).
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3.2 The Problem of Running SGNS on Short Random Walks

Since short random walks are more robust and reflect the node importance better,
we may be tempted to run SGNS directly on traces of short random walks. The
result is not satisfactory as demonstrated in the Section 5. This is caused by the
strategy in SGNS for generating the training pairs as we explain below.

Given a typical short trace of length six n0n1n2n3n4n5. Suppose that five
epochs are run in SGNS, and the window length is five as in a typical SGNS
setting. When the center word is n0, it will be used as the input of the neural
network in SGNS and pairs with n1, n2, ... and n5 with different frequencies,
on average they are 5, 4, 3, 2, 1 times respectively. When the center word moves
forward, n0 will be paired as output in the neural network with n1 5 times, with
n2 4 times, and so on. Hence, altogether, n0 occurs 5 + 4 + 3 + 2 + 1 = 15 times as
the input/output on average. On the other hand, nodes in the middle of the trace
(or text in word2vec) will have higher occurrences. For instance, n2 will be used
as input in the neural network 4 + 5 + 5 + 4 + 3 = 21 times as illustrated below:

4, when center word is n0

5, when center word is n1

5, when center word is n3

4, when center word is n4

3, when center word is n5,

(1)

It is much higher than that of n0 (15). As a result, n2 will be updated 1.4 times
more than n0 on average during the training process.

Those nodes should have equal importance – if they were in a long long trace,
they would have the same occurrences in training. In short walks, the long trace
was chopped down to shorter pieces for better visiting probability, but we should
not penalize the nodes at the ends of a trace.

To summarize, node occurrence count in training pairs depends on two fac-
tors, one is the node visiting probability in random walks, the other is the scan-
ning/sampling algorithm. When we change to short random walks to cater for
more reasonable visiting probability, we also need to change the pair sampling
algorithm to cope with the short trace.

4 Our method

4.1 Pair-wise Combination

To understand our solution, let us fall back to the word embedding problem in
SGNS momentarily. Let us suppose that the text is continuous without paragraph
or document breaks to simplify the discussion. Our problem is reduced to the
following word embedding problem: If we scramble the text into short pieces, say
each of length 5. With the long trace gone, what is the method to generate the
training pairs from the scrambled pieces (5-grams)?

In this case, running SG on k-grams is not the right choice as we explained
in the previous section. Instead, we should use co-occurrences Lund and Burgess
(1996) that was used to capture word relations. Interestingly, the co-occurrence
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count in k-grams is actually proportional to the SG count on long text. More
specifically,

Theorem 1 Given a long text and a pair of words wi, wj . Let fc(wi, wj) denote the

co-occurrence frequency of (wi, wj) obtained from k-grams of the text, and fs(wi, wj)
is the frequency obtained by Skip-Gram. fc(wi, wj) is proportional to the expectation

of the fs(wi, wj), i.e.,

fc(wi, wj) ∝ E(fs(wi, wj)) (2)

Proof Suppose that wi and wj co-occur in a k-gram with x positions apart from
each other, for x < k−1. They will co-occur in other neighbouring k−x k-grams. In
SG, when wi is the centre word, (wi, wj) will be trained with probability (k−x)/k.
Hence, the expected number of pairs in SG is proportional to (k − x), supposing
that k is a constant.

To support Theorem 1, we run SGNS and pair-wise combination on text8.
Text8 is widely used to demonstrate word embedding algorithms, e.g., in (Penning-
ton et al., 2014). It is the first 108 bytes of a clean dump from English Wikipedia.
We set the window size to 5 in SGNS and sum the word pair occurrence of five
runs. Then we compare the occurrence with the ones obtained by pair-wise combi-
nation in Figure 2. The x-axis is the rank of the training pairs and the y-axis is the
corresponding occurrence. We can see that these two lines are matched perfectly
with Pearson’s Correlation Coefficient of 0.99. For instance, the most frequent
word pair is (of, the). It appears 2,082,562 times in SGNS and 2,082,590 times in
pair-wise combination.
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Fig. 2 Comparison of SGNS and pair-wise combination. The Pearson’s Correlation Coefficient
between them is 0.99.

4.2 ShortWalk Algorithm

Pair-wise combination gives equal weight for all nodes in the short traces. Thus, we
can combine it with short random walks to generate the training pairs. Algorithm
1 describes our method. ShortWalk takes a graph G = (V,E) as the input and
initializes the SGNS model. It also initializes a walker that starts walking from a
random node. At each step of a random walk, the walker randomly traverses to
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Algorithm 1: ShortWalk algorithm

Input : Graph G = (V,E); maximum walk length l;
embedding size d; sampling budget S

1 Initialize SGNS;
2 while number of trained pair < S do
3 currentNode = a random node from V ;
4 trace = (currentNode);
5 while length(trace) < l & currentNode has neighbors do
6 currentNode = a random neighbor of currentNode;
7 append currentNode to trace;

8 end
9 for i = 0; i < len(trace); i+ + do

10 for j = 0; j < len(trace); j + + do
11 if i 6= j then
12 Update SGNS with (trace[i], trace[j])
13 end

14 end

15 end

16 end

one of the current location’s neighbors. If the current location has no out-going
edge, or the length of current trace excess the threshold l, it will teleport to a
random node. Meanwhile, ShortWalk will generate the training pairs by taking
the pair-wise combination of all nodes occurred in that trace to update SGNS.
The algorithm stops when the number of training pairs been updated meets the
preset sampling budget S.

The differences between ShortWalk and DeepWalk are: 1) ShortWalk uses a
smaller l to generate the walking traces than DeepWalk. In most DeepWalk ap-
plications, l is set to a large value around 100. In ShortWalk, l is the highest
proximity we want to reserve of the graph, which can be treated as the window
size in DeepWalk. 2) ShortWalk generates the training pairs by taking pair-wise
combination of all nodes occurred in the walking path (line 9,10 in Algorithm
1). Compared with DeepWalk, which uses SGNS to generate the training pairs,
ShortWalk gives equal weight to all nodes in the same path.

5 Experiments

We evaluate our ShortWalk against DeepWalk (Perozzi et al., 2014). We do not
compare with matrix factorization approaches since SGNS-based algorithms are
proved to be superior. For SNGS based algorithms, most utilize additional at-
tributes of the graph, and biased random walks that in favour of certain datasets.
The closest to DeepWalk is Node2Vec. It is not compared with because the perfor-
mance hinges on the tuning of hyper-parameters (p and q in the paper) data-wise.
Besides, it is not scalable to large graphs even when the optimal hyper-parameter
is found.

We experiment with two versions of DeepWalk, i.e., the traditional one with
long walk length (l = 100, denoted as DeepWalk100), and our improved version
that is tailored for directed graph with shorter walk length (l = 5, denoted as
DeepWalk5). Our ShortWalk performs short random walk in the same way as
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DeepWalk5. The difference is in the generation of training pairs. I.e., instead of
and generates training pairs with pair-wise combination.

Once the training pairs are generated, they are fed into the popular word-
embedding algorithm SGNS. For each method, we set the number of negative
samples per training pair to 5, the dimension of embeddings to 100. The learning
rate decays from 0.025 to 0.0001. These are the common settings for SGNS based
algorithms (Mikolov et al., 2013a). However, the iteration time was rarely discussed
in the previous works. In our work, we optimize the models with the same number
of training pairs per dataset for a fair comparison. For each dataset, we set the
sampling budget to 2 ∗ 100 ∗ |V | ∗ 10. Intuitively, it is the size of parameters of
SGNS model multiplied by 10. The preliminary experiment suggests the model
will converge and give a good result with this value. For DeepWalk, the window
size is set to 5. Thus, the maximum walking path length l for ShortWalk is set to
5 to capture the same structures of the graphs.

For the sake of a fair comparison, we reimplement all algorithms in one plat-
form so that they can run under exactly the same hyper-parameters. Cython from
scratch. BLAS (Basic Linear Algebra Subprograms) is used to accelerate the vec-
tor computation. Our implementation can perform up to 5.8 million updates per
second per thread. We also use multi-thread to boost the training speed. It is faster
than most existing implementations (Mikolov et al., 2013a; Řeh˚uřek and Sojka,
2010). Experiments are conducted on a server with 24 cores and 256 GB memory.
The source code is available online 1.

5.1 Datasets

We exhaustively tested on all the labelled directed graph that are available, in
particular the directed labeled graphs used in the survey paper (Zhang et al., 2017).
These datasets fall into three categories. Cora, CiteSeer, PubMed, Cora Citation,
and AMinerV8 are citation networks extracted from digital libraries. Each node
represents an academic paper and each directed link is a citation. Some papers also
have label information indicating the corresponding research fields. These datasets
are widely used to benchmark the embedding algorithms.

We also used three well-known directed graph from SNAP (Leskovec and Krevl,
2014) and KONECT (Kunegis, 2013). For example, Wiki Vote is a social network
that contains the voting data of Wikipedia before January 2008. It is used by (Sun
et al., 2018) to evaluate ATP which is a network embedding algorithm that can
preserve the asymmetric transitivity.

PageRank is originally proposed to measure the importance of webpages. Thus
we also experiment with two webpages datasets: WebGoogle and Web BerkStan.
Webpages in WebGoogle are split by services. We use the two largest services (intl
and univ) as the ground-true labels.

We clean the graphs and only use the largest weakly connected component
(WCC) in our experiment. The statistics of the datasets are list in Table 2. The
smallest dataset only contains 2,110 nodes and the largest one has over 0.77 million
nodes linked by 4.18 million edges.

1 http://zhang18f.myweb.cs.uwindsor.ca/shortwalk
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Table 2 Statistics of datasets. We also list average shortest paths and number of triangles
for smaller graphs to understand their structure. The average shortest path and number of
triangles are not reported for AMinerV8 due to its large size.

Dataset # Nodes # Edges Avg degree Avg shortest path # Triangles # Labels

CiteSeer 2,110 3,757 1.78 1.52 1,083 6
Cora 2,485 5,209 2.10 4.57 1,558 7
wiki Vote 7,066 103,663 14.67 3.34 608,389 –
WebGoogle 15,763 171,206 10.86 6.33 591,156 2
PubMed 19,717 44,338 2.25 4.32 12,520 3
Cora Citation 23,166 91,500 3.95 13.82 78,791 10
Web BerkStan 654,782 7,499,425 11.45 13.75 64,520,617 –
AMinerV8 766,059 4,181,905 5.46 – – 11

Table 3 Performance of classification task. Scores are averaged from 5 models. Each model
produces one micro F1 score by 10-fold cross validation.

Dataset DeepWalk100 DeepWalk5 ShortWalk

CiteSeer 0.264 0.415 0.593
Cora 0.310 0.550 0.742
WebGoogle 0.838 0.966 0.986
PubMed 0.599 0.597 0.745
Cora Citation 0.444 0.513 0.718
AMinerV8 0.441 0.488 0.718

5.2 Evaluation on Classification Task

Classification is widely used to evaluate network embeddings (Grover and Leskovec,
2016a; Tang et al., 2015b; Perozzi et al., 2014). Because of the stochastic nature
of embedding algorithms, each run will produce a different embedding. To elim-
inate the effect of randomness, we run five models for each algorithm. Then for
each model, we train a Logistic Regression classifier implemented in the scikit-
learn toolkit with default hyper-parameters. The classifier takes an embedding as
the input, then predicts the corresponding label of that node. We perform 10-fold
cross-validation for each model and take the average micro F1 score as perfor-
mance. Therefore, each model will have one performance score. Then we report
the average and standard deviation of these five scores.

Table 3 and Figure 3 show the results, from which we have observations as
follow:

1. Overall, ShortWalk outperforms DeepWalk100 and DeepWalk5 in classification
task consistently. The highest performance is reported on WebGoogle. F1 for
ShortWalk is 0.986. DeepWalk100 is 15% lower (0.838).

2. DeepWalk5 has better performance than DeepWalk100 on all datasets except
PubMed. This indicates that shorter walking traces indeed can improve the
quality of embeddings. However, the result is not satisfactory. For instance, the
improvement is very small for large graphs such as PubMed, Cora Citation,
and AMinerV8.

3. ShortWalk further improves DeepWalk5 by generating training pairs using the
pair-wise combination. The improvement is significant. For example, Short-
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Fig. 3 Performance of classification task. Each model produces one micro F1 score by 10-
fold cross validation. Panel(a) reports the F1 score averaged from 5 models. The shaded
area indicate the standard deviation. Panel(b) shows the corresponding improvement using
DeepWalk100 as the baseline.

Walk has 24.4%, 61.7%, 62.8% improvements against DeepWalk5 in PubMed,
Cora Citation, and AMinerV8.

4. Embeddings are stable in different runs. The standard deviation of the F1s
is too small to observe in the plot. For instance, AMinerV8 has the smallest
standard deviations of 0.003 and 0.001 for ShortWalk and DeepWalk.

5. The improvements vary for different datasets. The largest improvement of
ShortWalk over DeepWalk100 is 139% in Cora. CiteSeer also receives 125%
improvement. PubMed has only 315 labeled data. It has the smallest improve-
ment among all datasets.

5.3 Evaluation on Link Prediction

In a graph, nodes interact with each other via links. Such links may be inaccurate
or incomplete. Link prediction is a task to predict the missing links in a network
(Liben-Nowell and Kleinberg, 2007). It is another popular benchmark for the eval-
uation of network embeddings (Grover and Leskovec, 2016a; Goyal and Ferrara,
2018b). In this task, each node has an embedding. Then the relation between
two nodes can be represented by their embeddings using the Hadamard operator
proposed in (Grover and Leskovec, 2016a).

To evaluate embeddings in this task, for each dataset, we use 70% proportion
edges to learn embeddings and use the rest 30% edges as test data. In the evalu-
ation phase, we treat the link prediction task as a regression task that calculates
the probability of two nodes is linked by an edge in the network. Therefore, the
true examples are the edges we removed before (the 30% proportion edges), and
an equal amount of false examples are generated randomly. A Logistic Regression
is used in this task. The output value is in the range of 0 to 1. Zero means very
unlikely that two nodes are linked by an edge. One means these nodes are expected
to be linked together. Then the performance is calculated by the Area Under the
Curve (AUC) of the Receiver Operating Characteristic Curve (ROC) (Hanley and
McNeil, 1982). This is the same strategy used in (Zhou et al., 2017; Goyal and
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Table 4 AUC score of link prediction. 10-fold cross-validation. 5 embeddings per dataset per
method.

Dataset DeepWalk100 DeepWalk5 ShortWalk

CiteSeer 0.491 0.529 0.653
Cora 0.489 0.544 0.647
Wiki Vote 0.682 0.636 0.809
WebGoogle 0.718 0.868 0.934
PubMed 0.620 0.566 0.891
Cora Citation 0.596 0.631 0.927
Web BerkStan 0.664 0.905 0.993
AMinerV8 0.901 0.904 0.986
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Fig. 4 Performance of Link Prediction task. Each model produce one AUC score by 10-fold
cross validation. Then the reported AUC score is averaged from 5 models. Panel(a) shows the
AUC score of ShortWalk and DeepWalk. The shaded area indicate the standard deviation.
Panel(b) shows the corresponding improvement using DeepWalk100 as the baseline.

Ferrara, 2018b). We run five models for each algorithm, then report the average
AUC scores.

Table 4 and Figure 4 are the results. The x-axis shows the datasets sorted by
the graph size. The y-axis denotes the AUC scores. Overall, ShortWalk outper-
forms DeepWalk100 and DeepWalk5 consistently on all datasets. Web BerkStan
has the best performance in this task. The AUC scores are 0.99, 0.91, and 0.66 for
ShortWalk, DeepWalk5, and DeepWalk100, respectively.

5.4 Discussions

ShortWalk improves DeepWalk from two aspects. It uses shorter walk traces as
the ‘text’, and uses pair-wise combination to generate the training pairs. Next, we
study two datasets to understand the impact of these two improvements.

We first take a look at the impact of the path length. Figure 5 shows the
length of the traces retrieved by DeepWalk100 and DeepWalk5. Panel (a) shows the
WebGoogle dataset. When l = 100, the distribution of the trace length resembles
a power-law. Most paths are short and few of them are long. However, we can see
a peak at the end of the plot (length of 100). This is caused by self-loops in the
directed graph. It contributes 9.17% of the total paths. When limiting the length
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to 5, we can minimize the impact of these loops. This explains why DeepWalk5 has
higher performance than DeepWalk100 in both classification and link prediction
tasks.

We plot the embeddings of in Figure 6. The first column shows the layout of
the network generated by Atlas Force 2 (Jacomy et al., 2014). Columns 2, 3 and
4 are the embeddings generated by DeepWalk100, DeepWalk5, and ShortWalk,
respectively. We use t-SNE (Van Der Maaten, 2014) to reduce the dimensionality
from 100 to 2.

An interesting observation is that long random walks, demonstrated byDeepWalk100,
do generate long trails of nodes that belong to the same category. At the same
time, there are large blobs of nodes from mixed categories that are threaded by the
long walks. This will make classifiers difficult to separate them. Shorter walks in
DeepWalk5 reduce the size of the mixed blobs. Our ShortWalk can reduce break
up the blobs further.

For PubMed data, the results of DeepWalk100 and DeepWalk5 are similar.
A further investigation reveals that all the traces in this data are short. The
longest length is only 11. This is because PubMed is a citation graph where papers
only cite old ones. Hence, there is no loop in PubMed. It is expected to see that
DeepWalk100 and DeepWalk5 have similar performance in classification and link
prediction tasks. Their 2D plots are also very similar. The only difference between
DeepWalk5 and ShortWalk is the way they generate the training pairs. As we
discussed in Section 3.2, SGNS gives more weights to the nodes located in the
center of the paths. By using pair-wise combination, each node on the same trace
receives equal weighs, leading to better embeddings.

6 Conclusions

SGNS based network embedding algorithms are widely discussed and applied in
real-world applications. However, these algorithms are designed for undirected
graphs, where long random walks are used to capture the structure of the network.
Applying these algorithms naively on directed graphs is problematic. This paper
reveals two problems when applying random walk on directed graphs. Different
from the undirected graph, long random walks can be trapped. Moreover, applying
SGNS directly on these short traces will interrupt the node occurrence.

To overcome these problems, this paper proposes a novel but effective method
called ShortWalk to learn embeddings from directed graphs. ShortWalk limits
the length of random walk paths so that the impact of traps can be minimized.
Instead of applying SGNS directly on the paths, we take the pair-wise combination
to generate training pairs from the traces. This ensures all nodes in the same path
will have equal weight during the learning process. We compare our approach with
DeepWalk on 8 datasets. Experimental results show that ShortWalk outperforms
DeepWalk consistently in both classification and link prediction tasks.
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Fig. 5 Length distribution of walk traces generated by DeepWalk with different walk length
l.
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Fig. 6 2-D plot of embeddings generated by DeepWalk100 (column 2), DeepWalk5 (column
3), and ShortWalk (column 4). The embedding dimension is further reduced to two using
t-SNE. The first column is generated using the Spring force network layout algorithm.
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Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings

of the 22Nd International Conference on World Wide Web (WWW ’13 Companion).
ACM, Rio de Janeiro, Brazil, 1343–1350. https://doi.org/10.1145/2487788.

2488173

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. (June 2014).



ShortWalk: An Approach to Network Embedding on Directed Graphs 17

David Liben-Nowell and Jon Kleinberg. 2007. The Link-Prediction Problem for
Social Networks. Journal of the American Society for Information Science and

Technology 58, 7 (May 2007), 1019–1031. https://doi.org/10.1002/asi.20591

Kevin Lund and Curt Burgess. 1996. Producing High-Dimensional Semantic
Spaces from Lexical Co-Occurrence. Behavior Research Methods, Instruments, &

Computers 28, 2 (June 1996), 203–208. https://doi.org/10.3758/BF03204766

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013a.
Distributed Representations of Words and Phrases and Their Compositionality.
In Advances in Neural Information Processing Systems. 3111–3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

- KDD ’16. ACM Press, San Francisco, California, USA, 1105–1114. https:

//doi.org/10.1145/2939672.2939751
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