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Abstract

The norm of data size estimation is to use uniform random samples whenever possible. There have been tremendous
efforts in obtaining uniform random samples using methods such as Metropolis-Hasting random walk or importance
sampling [2]. This paper shows that, on the contrary to the common practice, uniform random sampling should be
avoided when PPS (probability proportional to size) sampling is available for large data.

To develop intuition of the sampling process, we discuss the sampling and estimation problem in the context of
graph. The size is the number of nodes in the graph; uniform random sampling corresponds to uniform random node
(RN) sampling; and PPS sampling is approximated by random edge (RE) sampling. In this setting, we show that
for large graphs RE sampling outperforms RN sampling with a ratio proportional to the normalized graph degree
variance. This result is particularly important in the era of big data, when data are typically large and scale-free [3],
resulting in large degree variance.

We derive the result by giving the variances of RN and RE estimators. Each step of the derivation is supported and
demonstrated by simulation studies assuming power law distributions. Then we use 18 real-world networks to verify
the result. Furthermore, we show that the performance of random walk (RW) sampling is data dependent and can be
significantly worse than RN and RE. More specifically, RW can estimate online social networks but not Web graphs
due to the difference of the graph conductance.

1. Introduction

Size estimation is a classic problem that has many applications, ranging from the war time problem of finding out
the number of German tanks [14], to the more recent challenge of gauging the size of the Web and search engines
[20} 12,16, 38] and online social networks [[18 [15]]. The direct calculation of data size is often not possible or desirable
for several reasons. Quite often, data are hidden behind some searchable interfaces and programmable web APIs,
such as online social networks and deep web data sources. The access is limited, and the data in its entirety are not
available [37,[18]. The data can be distributed, and there is no central data repository such as in the case of peer-to-
peer networks [30] or the Web [20]]. Even when the data are available in one place, there are requirements for fast
just-in-time analysis of the data [[17]. Regardless of a large variety of application scenarios, a common approach to
solving these problems is to use samples to have a fast estimation of the data size, instead of slow and direct counting
of the data.

Many datasets can be viewed as graphs, especially the ones extracted from the Web and online social networks
such as Twitter and Facebook. These graphs are large, often distributed and hidden behind searchable interfaces. The
sampling process requires sending queries that occupy network traffic. In addition, most data sources impose daily
quotas. In such cases, the sample size has to be far less than the data size, and it is paramount to choose an efficient
sampling and estimation method.

For ease of discussion, sampling is modelled in the context of a graph, where uniform sampling corresponds to
uniform random node (RN) sampling, PPS (probability proportional to size) sampling corresponds to random edge
(RE) sampling. In this setting, we define the size as the number of nodes in the graph. Random walk (RW) sampling
approximates PPS sampling in that the sampling probability is proportional to its degree asymptotically.

State of the art The norm of size estimation is to use uniform random samples whenever possible. Real data
sources seldom provide uniform random samples directly. Therefore, there have been tremendous efforts to obtain
uniform random samples from the Web [16]], search engine indexes [2], and online social networks [12]], to name a
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few. These uniform random samples are costly, in that each valid sample may be accompanied by many invalid ones
that are thrown away. Recently, it was empirically observed that, instead of obtaining those costly uniform random
samples, RW sampling is actually better than RN sampling for size [18] and average degree estimation [26]][10] on
some datasets.

Our contribution This paper shows that the sampling methods for very large graphs should be different from
the ones traditionally preferred. Instead of RW, we show that it is RE that is better than RN when the graph is very
large. We demonstrate our conclusion not only empirically on 18 datasets and simulated data, but also analytically by
showing that its variance is smaller in our setting. In addition, we delineated the details as for

e When is RE better than RN? RE is better than RN only when the graph is very large, and consequently, the
sample size n has to be much smaller than the data size N. This is the scenario we assume, with application
background such as estimating online social networks with a limited number of web-based queries.

e How much better is RE over RN? We demonstrate that there is an upper bound for the performance improve-
ment, which is quantified by y? + 1. Here y is the coefficient of variation of node degrees. The upper bound is
derived analytically, and confirmed empirically on 18 large data sets. The derivation uses the assumption that
the data is very large.

e What can approximate RE sampling? When RE sampling is not available in practice, we need to resort to other
methods to approximate RE (or PPS) sampling. RW is an option, but the performance varies widely from data
to data. We find that RW can approximate the performance of RE for online social networks, but not for Web
graphs.

This result is particularly important in the age of big data when large and scale-free networks are ubiquitous [3]]
[33]. These networks can have very large degree variance. In theory, y* can be infinitely large when the slope of
the scale-free network falls under certain range. In practice, we observe y* as large as 1300 for the Twitter network
in 2009 [27], meaning that potentially RE sampling can be better in three orders of magnitude in terms of variance.
Such huge difference between the sampling methods will not only change the landscape of sampling practice, but also
shift the research focus. In the past, people strive for uniform random samples [2]. Nowadays for very large data, we
should take PPS samples, or develop sampling methods that can approximate PPS sampling.

2. The Background

Without loss of generality, this paper discusses the sampling methods and estimators in the setting of (un-)directed
graph. We focus on three sampling methods on the graph, i.e., random node (RN), random edge (RE), and random
walk (RW). In practice, these sampling methods can be implemented in a variety of ways, depending on the access
interfaces provided by the data sources.

Take online social network as an example. Suppose that the nodes are the user accounts, an edge is a message
linking two accounts. When a data source provides random access to messages, say searchable interface for messages,
we can access the accounts that are connected by the message. Thereby random edge sampling is implemented.
For random node sampling, some data sources may provide direct access to random accounts, or we can design a
sampling scheme to get uniform random nodes. For example, in Facebook, Twitter and Weibo, user IDs are fixed-
length numbers. Thus we can generate a random number within the ID space to probe valid random IDs. Appendix
in [12]] proves that such ID sampling will result in uniform random samples. Or, we can use rejection sampling or
Metropolis-Hasting random walk to get random nodes [2} [12]. RW seems to be supported by most programmable
web APIs, but the reality is more complicated. Web APIs, such as Twitter, typically do not return all the neighbouring
nodes in one remote call. Instead, one call can obtain a small number of neighbours, and the number of calls have
daily quota that is bound to IP addresses. With such restriction, it is costly to select a random neighbour when the
out-degree is large, and some ‘approximate’ RW needs to be employed in the sampling. RE sampling, on the other
hand, are also provided in various forms. A tweet or email is an edge that connects two users; a research paper links
two authors in co-authorship network. In particular, some Web APIs provide direct random edge access. For instance,
CiteSeerX, an academic paper search engine, assigns a citation number to all the citation edges in the network, ranging
from 1 to 30 million, enabling the random edge sampling directly.
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Table 1: Summary of notations

Notation Meaning Properties

N number of nodes

n sample size

fi number of nodes sampled exactly j times n =} jf;

C number of collisions in n samples c=X (é) fi

d; degree of node i

Di probability of node i being visited pi = d;/ Y, d; in RE sampling. Zfil pi=1
(d) mean degree (d)=71/N

(d*) mean of the squared degrees (d*y =YY, d*/IN

o2 variance of the degrees 0% = (d?) - (d)?

y2 square of coefficient of variation 72 =2 [{dY? = (d*{d?-1=T-1
dx/. degree of the j th sampled node x;e€{l,2,...,N}

(d,) asymptotic mean degree of RE samples (d,) = {d*)/{d)

In summary, it is difficult to obtain RN, RE, or RW samples directly in practice. Thereby, we need to know in
advance what are the performance of those sampling methods, or how large the sample size has to be so that we can
reach certain accuracy. For instance, if we know that the RE outperforms RN by a large margin, say by a factor of 100
according to the structure of the graph, we should go after PPS sampling no matter how ‘approximate’ it is.

2.1. Sampling Methods and Their Estimators

Given an undirected graph G(V, E), where V is the set of nodes, and E the set of edges. Let N = |V|, the parameter
we want to estimate. Nodes are labeled as 1,2, ..., N, and their corresponding degrees are dy,d>, ... ,dy. The volume
of the graph is 7 = Zﬁil d;, the average degree is (d) = 1\% Zfil d; = T/N. The variance o? of the degrees in the graph
is defined as 02 = (d*) — (d)?, where (d®) = Y.V, d?/N is the second moment, i.e., the arithmetic mean of the square
of the degrees. The coefficient of variation (denoted as vy) is defined as the standard deviation, or the square root of
the variance, normalized by the mean of the degrees:

, o2 D)

VR et M

Letl' =92 + 1. Table summarizes the notations used in this paper.

Suppose that a sample of 7 nodes (dy, , . . ., dy,) is taken from the graph, where x; € {1,2,...,N}fori=1,2,...,n.
Among them, there are f; nodes that are sampled exactly j times. Then, sample size n = )] jf;. Let C denote the
number of collisions in the sample, i.e., C = (é) fj - Note that C is larger than the number of duplicates that is often
used in capture-recapture methods [8]]. Our task is to estimate N using the sample. Table [I| summarizes the notations
used in this paper.

This paper focuses on three basic sampling methods, i.e., RN (random node), RE (random edge), and RW (random
walk). In RN sampling, each node is sampled uniformly at random with replacement. In RE sampling, edges are
selected with equal probability and two nodes incident to a random edge are collected. Thus, RE sampling is a kind
of PPS (probability proportional to size) sampling in that each node is sampled with probability proportional to its
degree. RW sampling selects the next node in the current neighbourhood uniformly at random. Its node selection
probability is proportional to the degree asymptotically. Fig. [1|is an illustration of the sampling methods. The
following subsections explain the corresponding estimators.

We shall emphasize that our method and conclusions are not limited to estimating the size of graphs. The result
applies to any size estimation as long as PPS sampling is used. For instance, one concrete application is the estimation
of the number of unique words in a corpus. If we sample word occurrences uniformly at random, popular words will be
sampled more often. In fact, each word is sampled with probability proportional to its ‘size’ (word frequency). Since
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Random Edge Random Walk

Figure 1: A graph and three sampling methods to select six sample nodes. Nodes can be sampled multiple times.

word frequency follows a power-law with a very large variance, we should use PPS sampling to estimate vocabulary
size according to our result. In addition, we can give the variance of this estimator. Thus, during the estimating
process, depending on sample size, we can give the confidence interval of the estimation.

2.1.1. RN Sampling
Different sampling methods require different estimators. When nodes are sampled uniformly at random, each
node is sampled with equal probability, i.e.,

1
p,-:ﬁ, fori=1,2,...,N. 2)

When two nodes are chosen, the probability that a collision (the same node being selected twice) happens is

N

1 < 1
2
= f= ) 1= —. 3
Since there are ('2’) pairs, the expected number of collisions is
n\ n\1
E(C) = =)= 4
©) (2) Z} % (2) 5 “)

Thus, the RN estimator for N is
— n\1
Ny = ( )—. 5)

2.1.2. RE Sampling

When nodes are chosen with probability proportional to their sizes, the probability of choosing node i is p; = d;/T,
where ), p; = 1. When two nodes are chosen independently at random with probability proportional to size d;, the
probability that a collision happens is

al 1 r
P=ZP,~2=§Zdi2=N- ©)



The expected number of collisions C is

n ul n\I"
E(C>=() p%=( )—. )
2; 2)N

Thus, the RE estimator for N is

= n\I’
Ng = (2) ok (3)

Thereby, we derived the RE estimator using I'. The introduction of I' in the estimator is important—it reveals
the difference between the RE and RN estimators, consequently we can compare them. The same estimator in very
different forms are used in [8}[18]]. Our derivation is different, so that we can compare these two estimators for uniform
and PPS samples. Comparing the estimators in equations [5]and [§] the only difference is that RE sampling produces
I" times more collisions using the same sample size. Consequently, the estimate is adjusted by a factor of I. When
more collisions are observed, the accuracy of the estimation is also improved. Intuitively, RE method can outperform
RN sampling by a factor of I'. In reality, the performance improvement is upper-bounded by I" as we will show in this
paper.

The second issue is whether I' is large enough to result in significant performance improvement for RE sampling.
Our first observation is that when the graph being studied is regular, I' = 1 and the RE estimator is reduced to the RN
estimator. However, many networks are large and scale-free, inducing very large I'. For instance, I' = 1300 for the
Twitter user network in the year of 2009 [27]. This large I' makes the RE sampling the obvious choice.

The third issue is that I itself needs to be estimated. I is the ratio of the average degree of the sampled nodes and
the average degree of the original graph, and can be estimated using the following formula [27]]:

A_ @ _ ;1=l dxl 1

[=— —. )
(d) o Ad)
In turn, the average degree can be estimated by the harmonic mean with high accuracy [28]:
— n
d) = w77 (10)
Qi 1/dy,

The details of the accuracy of average degree (and I') estimation is discussed in our previous paper [28]], hence not
included in this one. What we want to emphasize is that its RSE is far less than the RSE of 1/C, which is the focus of
this paper. [28] proved that the RSE of average degree estimation is upper bounded by (d)/ v/n. Given that the average
degree is normally small, and the sample size » is large for large data, the impact of the variance of I" can be neglected.
This can be also demonstrated by our 18 experiments reported in this paper. The purpose of having experiments in
addition to the proof is to verify this assumption, and a simplification used in the derivation. In particular we choose
large number of different graphs from a variety of areas to bolster our assumptions.

2.1.3. RW Sampling

In the literature, for instance in [18], an estimator equivalent to Eq. [§] was developed for samples obtained by
random walk (RW). It is based on the assumption that RW sampling can approximate RE sampling in that, asymptot-
ically, the sampling probability of a node is proportional to its degree. While RW can approximate RE sampling for
well enmeshed fast mixing networks, it can differ greatly when the graph conductance is small. [18] suggested that
RW sampling outperforms RN sampling on datasets IMDB, DBLP and Facebook. We prove that it is RE sampling,
not RW sampling, that outperforms RN sampling. Empirically we repeated the experiments on these three datasets as
well as 15 other networks. While it is true that for these three networks RW does outperform RN sampling, for some
other datasets, especially the Web graphs formed by web pages and hyperlinks, we observe that RW is much worse
than RE sampling.



2.2. Illustrating examples

The sampling and estimation methods can be illustrated using Fig[I] where N = 13,(d) = 2,T" = 1.96. Suppose
that the sample degrees taken by RN, RE, and RW sampling methods are (1, 1, 1, 1, 2, 8), (1, 8, 1, 8, 3, 8), and (4, 3,
8, 1, 8, 1), respectively.

For RN sampling, there are four nodes being sampled once, one node sampled twice. Therefore, fi = 4, f, =
1,C =1, and

= nyl 6x5 1
= —_= —_— — =15.
N (2)c 2 X1

For RE sampling, three nodes are sampled once, and there is one node that is sampled three times. Therefore,
fi=3,£=0,/3=1,C=3,and

— 1
(dx>=6(1+8+1+8+3+8)=4.83,

— 6
D=1 T 1. 1.1

1
1tgtitgtity

T =4.83/2.21 =2.18,

=221,

= n\I' 2.18
= — :1 —_— =1 . .
Ng (2)C 5% 3 0.90

For RW sampling,
h=4L=1C=1,

— 1
(dx>=8(4+3+8+1+8+1)=4.16,
6

(d) = ~2.11,
eI

T =4.16/2.11 = 1.97,

—  [n\T 1.97

Nw (2)C 5x = 9.6

2.3. Sampling Other Graph Properties

Graph sampling is an active research area that starts with the basic sampling methods such as random node (RN),
random edge (RE), random walk (RW), and their numerous variations and combinations [22], such as RW with
uniform RN restart [[1]] [46l]. Most work focuses on simple graphs, while some develops specific sampling methods
targeting directed or even weighted graphs [36]. Quite often, this group of work studies the sampling schemes in
an abstract level, independent of concrete application scenarios, so that the sampling problem can be understood
better without hinderance from implementation details resulted from real applications. Some application details are
discussed in subsection 2.4l

The key issues is graph sampling are what graph properties are preserved in the subgraph for each sampling
method, what properties can be inferred if they are not preserved, and which sampling method is better for a particular
objective. The properties that have been studied include aggregate functions (including data size [18] and average
[28]] ), degree distributions [41], community [29} |47} 142]], PageRank values [43]], social network centralities [S]]. For
instance, [41] showed that power law slope is not preserved by RN sampling.

To answer the question regarding which sampling is better, numerous comparative studies have been conducted
[350121, 22} [13]]. For instance, [35]] observed that random walk sampling can outperform MHRW (Metropolis-Hastings
Random Walk) in the context of peer-to-peer networks, [21] showed that RN sampling performs better than RE
sampling in approximating the clustering coefficient of the graph. In theory RW or MHRW can obtain samples
from desired distributions [25]]. In practice, we observed large networks that have very long mixing time, making it
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almost impossible to reach stationary distribution. Random jump can ameliorate the problem in general [1]. However,
controlling the random restarting ratio have mixed results for different graphs.

The evaluation of these methods, especially for advanced properties, are mostly limited to empirical experiments
on some datasets. One emerging direction is the impacts of graph size and topology on the sampling methods. Re-
cently, we discovered that RE can outperform RN sampling in orders of magnitude on average degree [28] estimations
for large and scale-free graph. A more interesting question is whether this phenomenon can be expanded to other prop-
erties. This paper is an advance on this direction: we show that data size estimation can be also improved greatly using
random edge sampling.

This paper differs from our previous work described in [28] in that one estimates the average degree, while the
other estimates size of the graph, i.e., the number of nodes in a graph. First, size estimation is a more complex problem
than average degree estimation. Size estimation is based on collisions as well as the degree variation. Degree variation
in turn depends on average degree. Thus, size estimation depends on the average degree estimation. Secondly, the
estimators and their variances are different. We derived the variances for the RN and RE size estimators, and compared
their differences.

2.4. Sampling Web Interfaces

Another set of related work is to apply sampling methods on real applications, in particular on hidden web estima-
tion through restrictive web interfaces. Since the seminal work on estimating the size of the Web and search engines
[20], query-based profiling of hidden data sources has been widely studied by the information retrieval community
[7]. The key challenge is that the samples obtained from web interfaces have various types of biases [4]. For example,
one of the biases is caused by non-uniform random sampling. To overcome this bias, vast amount of research has
been done to obtain uniform random samples. One approach relies on Markov Chain Monte Carlo methods such as
rejection sampling, importance sampling, and Metropolis-Hasting random walk (MHRW) [2]]. The other approach is
to exploit the web interface specifics, such as relatively small ID space in Facebook [13], prefix encoding in Youtube
[48]], and negation of queries [9]. Since uniform random samples are costly to obtain, there are works that adapt the
estimators to account for the biased sample. For instance, [38] uses linear regression to adjust the estimator. Two
problems remain open due to the high cost of the remote queries and the restrictive web interfaces: (a) how to utilize
all the return results of remote queries. For instance, simple random walk sampling requires to select only one random
neighbour, while in practice one remote call returns many documents or neighbours. We will develop sampling meth-
ods that do not throw away many returned data; (b) how to mimic traditional sampling methods using restrictive web
interfaces: web interfaces impose many restrictions that can disable traditional graph sampling methods. For instance,
a query can return only the top k£ matches. Many sampling methods, including simple random walk, requires that all
the returns are available so that a random neighbour is selected. We will seek web interface sampling methods that
can mimic those basic graph sampling methods.

3. Variances Of The Estimators

Estimators are normally evaluated in terms of bias, variance ( var(ﬁ) ), and the combination of them, i.e., mean
squared error (MSE). In [27]], we discussed the bias problem, which is rather small in general. This paper focuses on
the variances of the two estimators. We do not use Chebyshev’s inequality for evaluation as some other papers do,
because Chebyshev’s inequality gives an upper bound that is valid for any data distribution. Consequently, experi-
mental results can not be explained well using Chebyshev’s inequality. We observed that the estimates are of normal

distribution [44], thus there is a much tighter bounds. For instance, when relative standard error RSE(: var(ﬁ )/N )

is 0.1, the 95% confidence interval is roughly N +0.2N. This is the why in our experiments the RSE values are around
0.1.

3.1. Variance of RN Sampling

We derive the variances using the classic Delta method. The key difference is the approximations we make due
to the big data assumption. Otherwise, the Taylor expansion has a sequence of long terms, and loses the intuitive



understanding. Let C, the number of collisions, be the random variable. The Taylor expansion of 1/C around E(C) is:

1 1 C-E©O©) 2 (C-E())?

— = - + 11
c E© E(C)? E(C)? 2! (an
By applying var on Eq. [5] and taking the first two terms in the Taylor expansion, we have
. 4 1 4
var(Ny) = %var(a) = AHEZ—C)“VW(C)' (12)

When selecting two nodes randomly from a set of N nodes, the probability of having a collision is p = 1/N. When
n number of sample nodes are selected, there are (’;) pairs. The number of collisions follows the binomial distribution
B(n(n - 1)/2,1/N) whose variance is

var(C) = (g)p(l - p) =EC)(1 - 1/N) 13)

When N is large, var(C) =~ E(C). Substitute this into Eq. and note that n?/(2E(C)) = N, we derive the following:

Lemma 1 (Variance of N 'N). The estimated variance of RN estimator ]VN is
var(Ny) ~ —— ~ ——. (14)

Reformulating the above result using RSE, we see that the accuracy of the estimation depends solely on the

expected number of collisions:
@y
RSE(Ny) = ~ s)

N T VEO)

Since the derivation employs several approximations, we conduct a simulation study to verify our result and
understand its limitation. The simulation study is depicted in Fig. The data size N = 10°. Sample sizes range
between 4472 and 14142, so that the expected collisions range between 10 and 100. For each sample size, estimations
are repeated 1000 times to obtain the observed collisions and RSEs.

First, the simulation study shows that random variable C does follow the binomial distribution B(n(n — 1)/2, p) as
depicted in panels (A) and (B) of Fig. 2] Both plots are histograms of the collisions, along with the corresponding
binomial distributions. Panel (A) plots the histogram when E(C) = 10, panel (B) is when E(C) = 100.

Second, the observed variance of C fits the estimated variance very well over various sample sizes, as illustrated
by panel (C). Le., var(C) ~ E(C). Third, the observed RSE (or equivalently variance) fits the estimated RSE when
sample size is not very small. From panel (D) we can see that RSE of NN is about 1/ vE(C) when E(C) > 20.
When E(C) = 10, there is a gap between the estimated and observed RSEs, introduced by the Taylor expansion
approximation. When E(C) is as small as 10, the third term in Eq[TT|can be no longer omitted.

3.2. Variance of RE Sampling

The variance of RE estimator involves three variables, the collisions C, the estimated average degree Cd\) of the
original graph, and the average degree of the sampled nodes (d/;) The variance of N is too complicated to compare
with that of Ny without some assumptions. We assume that N is very large, and C ~ 100. Consequently n = V2NC/T.
We can see that C < n < N. We restrict the collisions around 100 so that the corresponding Ny estimator has RSE
0.1, or, the 95% confidence interval is N + 0.2N. Under such assumption, we can approximate the variance of N, £ as
follows:

Lemma 2. The variance of Ng is

var(ﬁE) ~

2 3
N (1 Zn(d)) (16)

EC) \ " NL@y
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Figure 2: Variance of RN estimator.

Proof. See Appendix.
Comparing the variances for RN and RE samplings in Lemma 1 and Lemma 2, we have the following:

Theorem 1. Given the same sample size n. The variance ratio between RN and RE sampling is:

vary) F(l , 2nd )_l (17)

var(ﬁE) b NI{d)?

‘We highlight two points regarding this result. First, when sample size n <« N, the second term in Eq. |17]is small
enough to be negligible. In this case, RE sampling outperforms RN sampling up to I" folds in terms of variance, and
VT in terms of sample size.

Second, the second term grows with sample size n, indicating eventually RN will become better. The tipping point
is

n = NT*(d)* /(2(d*)). (18)

When sampling large graphs, in general RE is better than RN, or n < NI'>(d)?/(2(d*)), as we will show in our
simulation studies and in 18 real networks. This is due to two reasons: 1) n is in the order of V2N/T to generate
enough collisions, or gain sufficient estimation precision. The ratio n/N is in the order of O(1/ VNT). 2) Although in
theory we can let n approach or even surpass N, the essence of sampling is to use a very small portion of the data to
predicate the properties.

3.3. Simulation Study

Suppose that degree d; follows an extended version of power law,

A

di = G 19)
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Figure 3: Variances when data size N changes. All the datasets have the same distribution. Panel (A) Degree distribution when N = 10*. B)T
grows almost linearly with N. (C-F) Sample sizes needed to produce 0.2 RSE. (C) Histogram of 500 estimations using RE method. (D) Sample
size for RE does not increase as fast as that of RN. Improvement ratio grows with N (in Panel E) and y (in Panel F).

where A is a normalizing constant that satisfies

N N 1
; di=A ; T N{(d), (20)

and B < N is a constant so that the top-portion of the log-log plot has a curve instead of a straight line. It is called
Zipf-Mandelbrot law [32] that can model real-world data better. When g8 = 0, it is reduced to the standard power law.
Note that the exponent « is for the degree-rank formulation. The corresponding frequency-degree version of power
law has slope —(a + 1) [34]. Since the vast majority of networks have degree-frequency slope around -2 [33]], in the
following we derive the variance when the slope is exactly -2, i.e., @ = 1 in the degree-rank equation.

3.3.1. When Data Size Changes

We first demonstrate that the advantage of RE method grows with the data size, assuming the degree distribution
remains the same. In this experiment, all the datasets follow Zipf-Mandelbrot law with 8 = 50 and @ = 1. Data sizes
range between 10* and 10*. Here we use relatively small data so that an overlap between RN and RE can occur, while
the trend is still clear.

First, in Fig. [3| panel (A) we show the degree distribution for the graph when N = 10*. We can see that the
shape agrees with most real networks, particularly the flatter segment in the left upper corner of the plot. Panel (B)
shows that I' grows almost linearly with N for the same distribution. Panel (C-F) compares RE and RN samplings
when RSE=0.2. All the data are obtained with 500 repetitions. Panel (C) gives an intuitive understanding for the 500
estimations when RSE=0.2 for the data N = 10*. As expected, these estimations are unbiased, and follow a normal
distribution. To achieve such RSE, RN method requires larger sample size when N is large, as panel (D) indicates.
Sample size for RE grows very slow compared with RN. In particular, RN and RE methods are almost the same
when the data is small (N=1000). To compare the growing speed, we plot the sample size ratios between RN and
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RE methods. We can see that the ratio grows with data size N in Panel (E) , and with y in panel (F). The Pearson
correlation coefficient is 0.9892, indicating a linear relation between the ratio and vy, as implied by Theorem 1.

3.3.2. When Sample Size Changes

Here we show that the greatest advantage happens when sample size is small relative to the data size. This time we
have a fixed data size N = 10*, sample size ranges between 500 and 5000. We assume a sightly different distribution
where 8 = 0 instead of 50 as in the previous example, so that the simplification gives us a better understanding for
several parameters in Eq.

Now that 8 = 0, the normalizing constant A = N{(d)/ ZZ , 1/i% can be characterized by the Riemann-zeta function
{(a) = Zf\i , 1/i%. In such distribution N ~ A, since the smallest degree dy = A/N = 1. Utilizing the fact that
{(1)=InN, {(2) = 1.6, and £(3) ~ 1.2, we derive several approximations as below:

1 & N
(d}:N;di=;7=§(l)zlnN, 1)
1 & YN
() = N;dl ; 5 = N{(@2) = LoN, 22)
1Y VN2
3\ _ 3 _ - N? =~ 2
<d>_N;di Zl: = = NG) ~ 1287, (23)
[ = (d*)/{d)* ~ 1.6N/In®> N. (24)

Substitute these equations into Eq. [[7|we have

Corollary 1. When the degree distribution follows a power law d; = A/i, the variance ratio between RN and RE
methods is

var(Ny) ( n )_1
— =T (1+ (25)
var(NE) 0.8(d)
In other words, RE outperforms RN when
n<0.8dyI'-1) (26)
~ 0.8(d)N/In* N 27)

For large data, n << N. Therefore RE is better than RN method.

To verify our analysis, we generate synthetic data that follow the same distribution. In our synthetic data, N =
10%,(dy = 10,(d®) = 1.71 x 10*,(d*) = 1.28 x 10, and " = 153.82. Compared with the formulas in Eq.’s [21] to[24]
the synthetic data are rather close to those approximations. Its degree distribution is shown in Fig. [ panel (A). On
this synthetic data, we run PPS sampling for sample size ranging between 500 and 5000. For each sample size, we
repeat the experiment a hundred times, record its RSE, and plot it in Fig. @] as observed RSE. Also, we plot the RSE
against sample size for RN sampling.

This experiment demonstrates that 1) Observed RSE fits well with the estimated RSE that is calculated by Eq.
B0} 2) RE is better than RN sampling when sample size is small. When n grows closer to N, such performance
improvement diminishes. The tipping point is 0.8(d)(I' — 1) = 0.8 x 10 x (I' — 1) ~ 1222 by Eq. [26] which is close
to the crossing point in panel (B). Note in this simulation study we use rather small data (N=10000) to show the
occurrence of the crossing point. When data size is larger, the advantage of RE method becomes more obvious.

4. Experiments on Real Networks

4.1. Datasets
We demonstrate our results on 18 datasets listed in Table 2 Most of them are from the Stanford SNAP graph
collection [22]. Due to space limitation, for some network categories only one graph is reported if they have similar
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Table 2: Statistics of the 18 real-world graphs, sorted in descending order of the coefficient of degree variation y. Each graph has a citation
indicating where the data is from. @ is the conductance.

Graph | N(x10%) yor V[ =1 @(x1079)
WikiTalk [22] 2,388 26.32 2,700
BerkStan [22] 654 14.51 5.3
EmailEu [22]] 224 13.66 13
Stanford [22] 255 11.51 5.8

Skitter [22]] 1,694 10.46 56
Youtube [31]] 1,134 9.64 440
NotreDame [22]] 325 6.40 9.4
Gowalla [22] 196 5.54 1,200
Epinion [22] 75 4.02 610
Google [22] 855 4.00 62
Slashdot [22] 82 3.35 1,900
Facebook [45]] 2,937 3.14 590
Flickr [22] 105 2.64 68
IMDB [3] 374 2.05 130
DBLP [11] 511 1.61 560
Amazon [22]] 410 1.27 98
Gnutella [22] 62 1.21 9,100
CitePatents [22] 3,764 1.20 1,100

behaviour. For instance, citation graphs have similar degree distribution, similar coefficient of variation, and similar
error ratios between RN, RE, and RW sampling. For these networks, we choose only one representative network for
each category. In the category of the Web graph datasets, RW sampling deviates greatly from RE sampling. So we
include several Web graphs, including the Web graph on the domains of Notre Dame, Stanford, and Berkley-Stanford,
to investigate the cause for such deviation. Complete data description and programs can be found at http://cs.
uwindsor.ca/~jlu/sizel Their statistics are summarized in Table @ sorted according to vy, the coefficient of
variation of the degrees.

We make several observations on the datasets. First, most of them are scale-free networks as shown in Fig. E}
The degree distributions are similar to the ones we studied in simulation. The frequency-degree slope is around 2,
their corresponding degree-rank slope shall be around 1, the same slope we selected in our simulation studies. Some
datasets, such as Facebook and Citation networks, have a curve that is reflected by the Zipf-Mandelbrot law we used.
There are irregular data distributions, such as Flickr and Amazon that have broken trends in the plots.

Second, not all the scale-free networks are the same. They are very different in terms of y, ranging between 1.20
to 26.32 (I" ranges from 2.44 to 693.74). Third, Web graphs (sub-figures 4, 7, and 10) do not form a straight line in
the upper part of the log-log plots, indicating irregularity in the graph structure. Albeit the varieties of the datasets,
we will show that our result withstands without exception.

4.2. RE vs. RN Sampling

First, we compare the sample sizes needed to obtain the same RSE for all the datasets. We show that there is a
strong correlation between VI and RN/RE ratio. Fig. EI plots the sample size ratio against VT for the 18 datasets
when RS E = 0.2 (panel A) and RS E = 0.1 (panel B).

The plot shows that 1) RE is better than RN consistently for all the datasets, as all the RN/RE ratio values are
greater than one; 2) The ratio has a strong linear correlation with VT as can be seen visually from the plot, and from
the Pearson’s correlation coefficient (0.98 when RSE=0.2 and 0.95 when RSE =0.1); 3) The improvement ratio is
bounded from above by \T , as all the ratio values are below the line; 4) The markers are closer to the straight line in
panel (A) than that of panel (B), validating our analysis in section [3.2] that the second term in Eq. 29 becomes more
important with the growth of sample size.
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Next, we use Fig. [/|to demonstrate the trend of the variances with growth of sample size, and compare the
estimated variance vs. the observed ones for the 18 datasets. Sample sizes are chosen so that the largest observed
RSE is approximately 0.2. So n varies from data to data. Larger RSEs are not considered because they do not produce
meaningful estimations. Besides, the Taylor expansion approximation is not accurate when RSE is large as we have
shown in Section [3.1] Fig. [7] shows that 1) the estimated variance agrees with the observed variance in general,
especially for the datasets with small y.

To summarize, albeit the great varieties of the datasets, RE sampling always outperforms RN sampling, and the
ratio has a strong positive relation to VI with very high correlation coefficient.

4.3. RW Sampling

RW sampling is more prevalent and supported by most real networks such as Twitter and Facebook [12]. It can be
regarded as an approximation to RE sampling in that asymptotically the node sampling probability is proportional to
its degree. Based on this assumption, the same RE estimator NE is used in this paper and others’ such as [[18. |37, 19}
20]. It was reported that RW is better than RN sampling for Twitter [26], DBLP, IMDB, and Facebook [18]]. Now we
run 18 datasets with 3000 repetitions. The sample size is V2NC where C=100. i.e., the expected number of collisions
is 100 for random node sampling. The comparison of three sampling methods is depicted in Figure |8} As Lemma 1
indicates, RSE of RN sampling is approximately 1/ V100 = 0.1. For RE sampling, the same sample size will create
more collisions, thereby less RSE according to Lemma 2.

RW sampling does approximate RE sampling for many datasets, including the ones reported in the literature.
However, there are several datasets (Stanford, NotreDame, BerkStan, Google, EmailEu, and Flickr) whose RW is
very wrong. Most of them are Web graphs. Datasets NotreDame, Stanford, and BerkStan are the Web graphs in the
domains of the universities of NorteDame, Stanford, and the combination of Berkeley-Stanford. Dataset Google is
a sample Web graph collected by Google. EmailEu is a graph created from email senders and receivers. Flickr is a
network created by picture sharing.

Our question is why these graphs defy RW sampling. Random walk sampling is based on the assumption that
the nodes are sampled with probability proportional to its degree. This assumption can be hardly met in many real
networks, mainly due to two reasons: 1) mixing time: sampling probability is proportional to its degree only after the
mixing time. The mixing time can be very large when there are loosely connected components; 2) thinning rate: the
estimator assumes that the nodes are sampled independently. In a random walk, a node selection is actually dependent
on the previous nodes. To reduce such dependency, thinning is often applied, i.e., taking the samples every a few
steps, while discarding the samples in between. More precisely, given a sequence of sampled nodes (xi, x2, ..., X,),
there are correlations between the samples when they are obtained by random walk. To reduce such autocorrelation,
we thin the chain by discarding all but every s-th sample. s is called the thinning rate. [24] reported that the medium
of thinning rate is 40 among 21 papers that applied thinning. So we choose 40 as the thinning rate in this experiment.
We also tried other thinning rates, with limited impact on the RW result.

The other more important factor is random walk mixing time, which is inversely proportional to the square of the
conductance of the graph [40]]. So we calculate the conductances of all the 18 graphs using SNAP graph API [23]
, and plot their correlation with the RSE ratios between RW and RE sampling in Figure [9] It shows that there is a
strong positive correlation between the performance of RW sampling and the log of the inverse of conductance, where
the Pearson correlation is 0.8. Among the top four small conductance graphs (BerkStan, Stanford, NotreDame, and
EmailEu), the conductances are in the order of 107>, and they are about ten times worse than RE sampling. On the
other hand, most datasets have the ratio values close to 1, indicating that RW approximates RE sampling. Thereby it
is also better than RN sampling.

For low conductance graphs, we may wonder whether longer burn-in period or random restart [[1] will improve
RW sampling. The answer is yes, but the performance of RW can be still far away from RE sampling. Imagine
that there is a subgraph that is a bolas graph [25]]-there is a long single path, connecting with a densely connected
component. Suppose the size of this subgraph is k, the mixing time can be in the order of k> [23] in the worst case.
That is, one such small component with size 100 will cost 10° steps to escape from the RW trap. Such large mixing
time is impossible to implement, not to mention that k can be well above 100.

We demonstrate that such bolas subgraphs do exist in real networks in Figure [I0] It shows the subgraphs obtained
from random walks from three datasets (Flickr, EmailEu, and Stanford) whose conductances are low and one normal
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Figure 8: Comparison of three sampling methods. The sample size n = V2NC where VC = 10. It shows that for RN sampling (red solid bars),

the relative standard error is equal to 1/ V/C = 0.1 across all the datasets. RE sampling is consistently smaller than RN sampling.RW sampling can
approximate RE sampling for some datasets. For NotreDame etc. that have low conductance, RW is grossly wrong.
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Figure 9: The ratio of RSEs between RW and RE samplings over the conductance ®. For the four graphs with the lowest conductance, RW is
around 10 times worse than RE sampling. Sample size n = v2NE(C) where E(C) = 100. RSE is obtained over 3000 runs.

graph (Youtube) as a comparison. The node colour indicates the node degree in the original graph. It is clear that
Flickr has two loosely connected components with a long narrow tube, indicated by the blue/green colour of the tube.
What is more, the two components obviously have different average degrees, since one component is dominated by
orange/red colour and the other by green/blue colour. It shows that RW will take long steps to escape from one
component to the other. Depending on where it visited, RW will produce very different estimation.

EmailEu has a different topology even though its conductance is equally small. The subgraphs are mostly stars,
maybe caused by group emails. RW will be trapped in those large stars. Web graphs, for instance Stanford web, have
many bolas as subgraphs. A densely connected subgraph can be easily created using a few computer commands, such
as automated generation of documents in JavaDoc or HTML version of PPT slides. Many bolas subgraphs will make
the RW on the Web almost impossible.

5. Discussions and Conclusions

The state of art in size estimation is to use uniform random samples whenever possible. We show that on the
contrary to this common practice, PPS sampling outperforms uniform random sampling by a factor up to VT for large
data in terms of sample size.

In retrospect, this phenomenon was not observed in the past probably due to several reasons: 1) In traditional size
estimation studies, I is typically small (between one and two), thus the difference is hardly discernible. Our result
shows that the improvement ratio is up-bounded by I'. Thus, when I' is small, RE could be worse than RN. Even
in scale-free networks, I" in real networks may not be large due to the cut-off for the maximal values. For instance,
Facebook has an up-limit of the number of followers, resulting small I" value around two. Only recently we see large
scale-free networks whose I' value can be as high as 1000, such as Twitter and WikiTalk; 2) RE sampling is hardly
studied in the past. Random walk sampling is often used, but it is only an approximation to PPS sampling. The
comparison between RW and RN samplings often has a mixed results, failing to reveal a definite answer. In particular,
RW on the Web graph is always worse than RN; 3) The result is true only for big data. In the synthetic data that
assumes a power law distribution, we show that the improvement ratio grows almost linearly with the data size. When
the data size is very small, RN can be better than RE even if the network is scale-free.

This paper gives the variances of random node and random edge sampling for graph size estimation. The result is
surprisingly simple for RN sampling: the relative standard error is the reciprocal of the square root of the collisions.
As a rule of thumb, if we want the 95% error bound to lie within the range +0.2N, the expected number of collisions
should be 100.

In RE sampling the large nodes tend to be sampled more often, resulting in higher collisions given the same
sample size. It is easy to understand that RE sampling requires a smaller sample size to produce the same number

17



Flickr EmailEu

. 100~+c0
10~99

® 29

Stanford Youtube

Figure 10: (Better viewed in colour) Subgraphs obtained by RW sampling from Flickr, EmailEu, Stanford and Youtube. Each subgraph contains
60,000 nodes. Node colour represents its degree in the original graph. Green=1; Blue=2 ~ 9; Orange= 10~99; Red=100~ co.

18



of collisions, or the same standard error. What is more interesting is that we can quantify the difference using the
coefficient of variation of node degrees. So the second rule of thumb is that the ratio of RSEs between RE and RN
samplings has an upper bound VT.

To emphasize the importance of the result, we would like to point out that this result is not restricted to estimation
problems in graph. It can be applied to any size estimation problems where there is no graph at all. In that case,
RN sampling corresponds to uniform random sampling, RE sampling corresponds to PPS sampling. This paper is
written in the setting of graph because: 1) there are many large datasets that are in the form of graphs; 2) graphs give a
tangible explanation for PPS sampling; 3) RW exists in graph only, and it is a perfect example for a sampling method
that approximates PPS sampling (or RE sampling).

Traditionally RW sampling is studied more often, but its relationship with RN sampling is hard to construct. With
clear understanding of the relationship between RE and RN samplings, we can infer whether RW sampling is better
than RN sampling. The third rule of thumb is that if the graph does not have loosely connected components, most
probably RW will be better. This is because the random walk mixing time is small, and RW can approximate RE
sampling. This explains why RW is better for the datasets (DBLP, IMDB, and Facebook whose conductances are
high) in [18], and why various methods such as random restart need to be proposed to improve the simple random
walk for datasets such as Flickr [37].

From another perspective, this paper explains the results obtained in the past experiments such as [[18], and predicts
future empirical results if there will be. There are many data sources that have different graph topologies and different
sampling interfaces. These sampling interfaces enable various sampling methods and their approximations. We can
envision that there will be numerous empirical results in the pipeline from the combinations of datasets, interfaces,
sampling methods and the estimators. Our results can help people find the correct combination to produce excellent
empirical conclusions.

As a corollary, this paper implies that RW sampling is not good for the estimation of the properties of the Web.
For all the Web graphs we studied, including the ones listed in this paper (NotreDame, Stanford, BerkStan, Google),
they all have loosely connected components, resulting in very large estimation error. This may explain why the Web
is usually not sampled by RW.

This observation also reveals a fundamental distinction between the Web and online social networks such as Face-
book and citation networks. The Web is created with the help of computer programs. A single computer instruction
can spawn a large subgraph that is loosely connected to other parts. On the other hand, online social networks evolve
more naturally with full participation of people. It is unlikely large loosely connected component can be engineered
in movie actor networks, Facebook, Twitter, or citation networks. We conjecture that random walk works for the
networks created by humans, but not for the networks created by computers.

We want to emphasize that our result is not restricted to graph size estimation. It applies to any data size estimation
as long as the data are sampled uniform randomly or sampled proportional to their sizes. We use graph sampling
to explain our result because 1) Graph model provides an intuitive way to explain different sampling methods; 2)
Random Walk sampling is unique in graph and can be compared and evaluated against other sampling methods; 3)
It fits naturally to many applications such as online social networks, query-based sampling of deep web and search
engines where the documents and queries form a bipartite graph.
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7. Appendix: Proof of Lemma 2

Proof. The major component of the variance depends on the random variable C. Applying the same Taylor expansion
on 1/C as in Lemma 1, we derive:

var(C)

TN o N2
var(Ng) = N E(C)?

(28)
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var(C) is given by [39]:

N N

var(C) = (;) D p+nm=Dn-2)) p}
i=1

i=1

N
—n(n =1 =3/ p*.
i=1

It can be approximated by the following, bearing in mind the assumption that E(C) ~ 100 < n < N, p; = di(N{d))~!,
and (5) XY, p? = E(C):

u 2n(d®)
~ 3 3 _
var(C) ~ E(C) +n [:El D; = E(C)(l + (d)3)' 29)

Plugging Eq. 29]into Eq. 28] we obtain the result in Lemma 2:

. N 2n(d®)
var(Ng) ~ O (1 + NF(d)3) (30)

We can omit the variances of «/d\) and (d/x\) because their RSEs are much smaller than that of C, which is

1/2

€19}

1 PR 3
RSE(C) ~ [W T ;pi

First, RS E (@) < 4/ % according to [28]]. It is negligible compared with the first term of RSE(C), which is 1/ VE(C).
For (d/x\),

N N
var(dy) < E(d2) = Z pid? = (d)>N? Z . (32)

i=1 i=1

Applying the fact that (d,) = (d)I', we derive

N & \ B & .
RSE(d,)) < —E Y = —E 0. 33
() nl? & Pi 4E2(C) & P 33
Hence, it is smaller than the second term of RSE(C), which is often negligible compared with the first term. 0
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